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A new deep machine learning method is proposed for the task of selecting the parameters of a multilayer pho-
tonic structure to obtain a target optical spectrum of the reflection coefficient. The proposed training method
is based on the connection of an artificial neural network for solving the inverse problem and the analytical
transfer matrix method. This approach allows achieving high accuracy of the network. The developed method
can be applied to the design of a structure that takes the derivative of the coordinate for an incident optical
signal.
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Nanophotonic devices provide complex function-
alities through structuring materials at the micro- and
nanoscale [1–3]. One of the simplest, yet versatile
nanophotonic structures is an array of alternating lay-
ers with different thicknesses and refractive indices.
The optical response of such a multilayer structure
(MS) is controlled by the parameters of the layers and
can be adjusted to the requirements of a specific task.
Due to this f lexibility, MSs are successfully used in
such areas as topological photonics [4], nonlinear
optics [5, 6], magneto-optics [7], optical computing
[8], polaritonics [9], etc. [10–12]. However, realiza-
tion of all these possibilities requires developing meth-
ods for selecting the parameters (design) of MS with a
target optical response.

The MS can be designed by iterating through all
possible configurations and calculating the optical
response for each set of parameters. Such a calculation
can be carried out by one of many well-developed
methods, including the finite element method, the
finite difference in the time domain method, the
transfer matrix method (TMM), etc. The disadvan-
tage of this approach is its large time and computa-
tional costs. Another approach is based on solving the
inverse problem, i.e., determining the MS parameters
directly from a given response [13]. Many optimiza-
tion methods have been developed to solve the inverse
problem [14–17]. However, they are iterative and
therefore computationally expensive, which makes
them unsuitable for large-scale and complex struc-
tures. In addition, even a minor modification of the
target optical response forces to start over the optimi-
zation procedure.

To overcome this obstacle, it was recently proposed
to use an approach based on artificial neural networks
(ANNs) [18, 19]. The ANN can be used in one of two
ways. The first option is to predict the optical response
of the structure with particular geometric parameters
[19–21]. In this case, the ANN replaces expensive
computational modeling and increases the speed of
standard optimization methods. The second option is
to train the ANN to predict the MS with the required
response [22, 23], i.e., to solve the inverse problem.
This allows designing structures with a given optical
response in a fraction of a second. The main problem
of the second way of using the ANN is the non-
uniqueness of the inverse problem solution, which
leads to data inconsistency and poor convergence of
the ANN [18]. Several approaches have been proposed
to solve this problem. One of the most common of
them is two-stage ANN training: first, one network is
trained to predict the optical response of MS, and then
this pre-trained ANN is connected to another network
solving the inverse problem to form a tandem of net-
works [18, 23]. In this case, the ANN is not forced to
any specific solution of the inverse problem and the
network chooses one of the many solutions that leads
to better convergence. Another notable approach is
based on generative adversarial networks. In this case,
two ANNs (generator and discriminator) are trained
simultaneously [24]. The third approach uses reducing
the dimension of the parameter space using an auto-
encoder [25]. It is assumed that the inverse problem
has a unique solution in a space of smaller dimension.
One common problem in all the proposed methods is
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Fig. 1. (Color online) (a) Decimal logarithm of the rms error (MSE) for the (orange line) training and (blue line) test datasets
versus the epoch number. (b) Real part, (c) amplitude, (e) imaginary part, and (f) phase divided by  of the reflection coefficient
versus the angle of incidence. (d) Histogram of the distribution of rms error over the test dataset. The target reflection coefficient
is shown by the blue line; the reflection coefficient of the multilayer structure designed by the artificial neural network is shown
by the orange line.
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the need to train several ANNs, which inevitably leads
to additional errors.

In this paper, an alternative approach is proposed
that uses only one ANN to solve the inverse problem
of the MS design, which can significantly improve the
accuracy of the design. It is shown that the trained
ANN successfully bypasses the problem of non-
uniqueness of the inverse problem solution. This
approach can be used to determine the parameters of
various nanophotonic devices.

The paper considers an MS consisting of 10 alter-
nating layers of SiO2 /Ta2O5  with
a thickness from 0 to  nm, deposited on a
glass substrate . The goal is to determine the
thicknesses of the layers  ( ) of MS with a
given optical response. The input data for the ANN is
the angular spectrum of the amplitude reflection coef-
ficient for TE-polarized radiation at  nm in
the range of incidence angles  from 0° to 40°. The
spectrum is sampled by 100 points. The input of the
ANN receives an array consisting of the real  and
imaginary  parts of the reflection coefficient for
each angle of incidence; i.e., the array has a length of
200. The real and imaginary parts of the reflection
spectrum were chosen instead of the phase and ampli-
tude, since phase can have discontinuities that limit
the accuracy of the ANN [26]. The output data of the
ANN is an array D of 10 normalized MS thicknesses
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. The material of each layer is considered
known and fixed. The layer adjacent to air is made of
SiO2.

The TMM was used to create a dataset containing
the reflection coefficient spectra of randomly gener-
ated 10-layer structures. This ensures that the target
spectra can be achieved using the one-dimensional
MS considered in this paper. Then the dataset is
divided into a training part (used for ANN training)
and a test part (to check the ANN accuracy). Our
method of ANN training is based on connecting the
network with the TMM [27]. During the training pro-
cess, the target angular spectrum  is used as
the input of the ANN, and the array of normalized
thicknesses D is the output of the ANN. Then D is
used in the TMM to calculate the angular spectrum

 of the MS generated by the ANN. Then
the rms error (MSE) between the spectra  and

 is calculated. After that, the weights and biases
of the ANN layers are updated using backpropagation
of the error to minimize the MSE. In order to TMM
not to become a bottleneck in the training of ANN, an
optimized code was developed in which TMM is
implemented by multiplying multidimensional matri-
ces (tensors). TMM naturally fits into the process of
ANN training since it is based on matrix multiplica-
tion, which is the main operation of the deep learning.
In addition, the TMM states the analytical relation-
ship between the layer thickness and the reflection
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Fig. 2. (Color online) (a) Amplitude and (c) phase divided

by π of the reflection coefficient versus the angle of inci-
dence for two similar spectra from the test dataset (blue
and orange lines) and the spectra of multilayer structures
designed by the artificial neural network (green and red
lines). (b, d) Multilayer structures with close spectra from
the (b) test dataset and (d) designed by the artificial neural

network.

(a) (b)

(c) , deg

, deg
spectrum and can be used for backpropagation of the
error, i.e., calculating the MSE gradient relative to the
weights and biases of the ANN. In the described train-
ing process, the MS parameters from the training
dataset are not used in any way. In this case, the ANN
learns the patterns inherent in the TMM instead of
simply interpolating data from the training dataset.

The ANN training method was tested on the example
of a network containing four hidden layers of 500 neu-
rons each. The ANN was trained on 100000 samples
from the training dataset for 700 epochs. The MSE
sharply drops after 10 epochs, and then gradually

decreases to 10–4 (Fig. 1a). The distribution of MSE in
the test dataset is localized near zero, which proves a
good quality of training (Fig. 1d). Figures 1b and 1e
demonstrate the operation of our network using a ran-
dom example from a test dataset. Our network suc-
cessfully solve inverse problem. Figures 1c and 1f

demonstrate the amplitude  and phase arg  of the
reflection coefficient, which are calculated from the

real  and imaginary  parts of the reflection coeffi-
cient using the formulas:

(1)

(2)

where . Since arg  lies in the range from

–π to π, a jump of  in the reflection coefficient
spectrum can be observed (Fig. 1f).

An important question is how the developed ANN
deals with the problem of non-uniqueness of the
inverse problem solution. Figures 2a and 2c show two
similar spectra from completely different MS from the
test dataset (Fig. 2b). The average deviation of the
layer thicknesses, determined by the formula:

where , was used as a measure of the similarity

of MSs. For selected samples,  nm. Figures 2a
and 2c demonstrate that ANN successfully designs
MS with the target spectra. However, the average dif-

ference in the layer thicknesses  for the generated
MSs is only 3 nm (Fig. 2d). Next, the correlation

between the difference in spectra  and the differ-

ence in layer thicknesses  was estimated for samples
from the test dataset and for MSs generated by

the ANN. The Pearson coefficient  was used as

a measure of correlation. For the test dataset

, and for the MSs designed by the

ANN . It can be seen that in the test

dataset there is no correlation between the difference
in spectra and the difference in thicknesses; i.e., a sim-
ilar optical response can be demonstrated by MSs with
completely different parameters. However, there is a
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fairly strong positive correlation between the differ-
ence in spectra and the difference in thicknesses for
samples designed by the network. This means that for
these MSs, similar spectra are produced by similar
structures. Thus, during training, the ANN smooths
the parameter space and converges to one of the many
possible solutions of the inverse problem.

As an example application of our network, we
design MS, which is an optical spatial differentiator. In
order to implement a first-order spatial derivative,
such a device must have a transfer function (in our

case, the reflection coefficient)  [28], where

 is the tangential component of the wave

vector and  is the angle of incidence. Thus, the
amplitude of the reflection coefficient of the differen-
tiator should have a form similar to the modulus ,
and the phase should experience a π jump. To demon-
strate the operation of the network, an MS was
designed to perform differentiation at an angle of inci-
dence of 20°. The MS designed by the ANN has a
spectrum similar to the response of an ideal differenti-
ator (Fig. 3a). The operation of the developed device
was studied using custom TMM, which allows us to
calculate the reflection not only for plane waves, but
also for focused Gaussian beams. This is achieved by
expansion the Gaussian beam into a set of plane waves
[29]. The quality of differentiation was studied for a 3-
μm Gaussian beam focused on the MS surface. Since

≈ xR ik
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Fig. 3. (Color online) (a, left axis) Amplitude and (a, right axis) phase divided by π of the reflection coefficient versus the angle

of incidence for (red lines) the ideal differentiator and (orange lines) multilayer structure designed by artificial neural network.
(b, c) Intensities of the (b) incident and (c) reflected beams from the multilayer structure versus the coordinate. (d) Cross sections
of the intensity of the (blue line) incident and (orange line) reflected beams and (red line) the analytically calculated derivative

of the intensity of the incident beam.
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the reflection in the region of 20° is close to 0, the inci-
dent (Fig. 3b) and the reflected (Fig. 3c) beams are
visualized separately for visual clarity. Figure 3d shows
the cross section of the incident and reflected beams,
as well as the analytically calculated first-order deriv-
ative. Indeed, our ANN designed MS with a response
similar to the ideal differentiator, but not identical to
it. Increasing the number of layers can provide a better
quality of differentiation.

In conclusion, in this paper, we demonstrate a
method for training a single artificial neural network
to solve the inverse problem of designing a multilayer
photonic structure with a given angular spectrum of
the reflection coefficient. The proposed method
makes it possible to achieve a root-mean-square error

of less than 10–4, and thereby design MS that have a
target optical response with a high fidelity. The trained
ANN successfully solves the problem of non-unique-
ness of the inverse problem solution by smoothing the
parameter space. In addition, the ANN is suitable for
designing nanophotonic devices, for example, an opti-
cal differentiator. The proposed method of ANN
training can be transferred to the frequency spectrum
of the reflection coefficient, which will open up even
more opportunities for creating nanophotonic devices
with different functionalities.
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