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Topological insulators, originally discovered in the context of condensed matter physics, have provided
a powerful source of inspiration for the design of novel types of photonic crystals and waveguides. It was
unveiled that the quantized global characteristics of the band structure and eigenfunctions in the reciprocal
space underpin exotic properties of topological materials, such as their abilities to support scattering-resistant
wave transport along the edges or boundary surfaces and host robust confined states at corners or hinges.
The topological physics brought to the realm of photonics is enriched by non-Hermitian and nonlinear
effects and holds special promise for disorder-immune device applications. We review the recent progress
in implementing topological states of light in a plethora of platforms, including metacrystals, arrays of
microring resonators and optical waveguide lattices, that furthermore bridges to advances in quantum optics

and nonlinear nanophotonics.
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Introduction. Topological photonics has recently
emerged as a novel approach to robust waveguiding and
routing of light. It exploits engineered photonic struc-
tures [1] with the properties analogous to electronic
topological insulators [2] (TIs), which are insulating in
their bulk but exhibit conducting states at the surfaces.

The discovered in 1980 quantum Hall (QH) phase,
which arises in two-dimensional electron gases under
a strong external out-of-plane magnetic field applied,
represents the first notable example of the topological
insulating phase with broken time-reversal (TR) sym-
metry [3]. Such materials are distinguished by bulk
band gaps in their band structures but support chi-
ral edge states, which propagate unidirectionally along
the boundaries with built-in immunity to backscatter-
ing from disorder. In 2005, it was shown that strong
spin-orbit coupling may imitate the effect of a magnetic
field in time-reversal invariant electronic systems, giv-
ing rise to the quantum spin-Hall phase [4]. Its simplest
form constitutes essentially two copies of the QH phase,
where up and down spin electrons are decoupled and
experience opposite effective magnetic fields.

The concepts of topology in physics originate in sem-
inal works of Thouless et al. [5, 6] connecting the exper-
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imentally observable quantized Hall conductance with
the so-called topological invariant, namely, the Chern
number, defined in the momentum space. Later it be-
came clear that topological phases are not limited to
fermionic systems and can be translated to classical
wave phenomena. Unusual manifestations inherent to
topologically nontrivial states, including the ability of
edge modes to overcome structural imperfections with-
out back-reflection, drive general interest in topolog-
ical effects within photonics and optical communica-
tions [7, 8].

Basic concepts. Topological effects in condensed
matter systems arise from the presence of topologically
distinct energy bands of electron wavefunctions [9]. The
band structures can be replicated with electromagnetic
waves in periodic media casting analogues of topologi-
cal insulators in photonics. Topology is a general way
of mathematically classifying objects according to their
global properties, rather than every small detail. In the
narrow sense, this branch of mathematics studies com-
pact surfaces and their characteristics conserved under
continuous smooth deformations. The most straightfor-
ward example of such topological invariants is the genus,
which is the number of holes an object has. Interesting
properties of TIs are rooted in wavevector-space topol-
ogy and the existence of abstract “holes” in the modes of
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Fig. 1. (Color online) (a) — 1D dimerized array of metaatoms, where J and K denote inter- and intradimer hopping strengths,
respectively. At J < K the leftmost metaatom supports a strongly localized topological edge state. (b) — Illustration of the
winding number with a vector rotary evolution in the 2D Pauli-matrix space, as wave number traverses the Brillouin zone
(BZ). (c) — Hlustration of a holonomy of vector bundles over the sphere. This property is closely related to the concept of
the geometric, or Berry, phase. (d) — Schematic band structure of a finite 2D Chern TI with linearly dispersing chiral edge
state. (e) — Schematic band structure of a finite 2D Z, TI with spin-polarized edge states crossing the bandgap. Spin-up
(down) states are marked with red (blue) arrows. (f) — Schematic band structure of 3D TI. The bulk bands are gapped and
the gapless surface states lie within the bulk gap. (g) — Four Weyl points residing on the equi-frequency plane at k. = 0.
(h) — Schematic of a system with two Weyl points in the 3D bulk Brillouin zone, one of which acts as Berry flux source and

the other one as a sink. Adapted from [10-13]

the medium in momentum space. Whenever a material
possesses a topological invariant with nonzero value, one
can expect physical features that remain insensitive to
a range of perturbations. Interfacing two topologically
distinct materials results in the formation of peculiar
disorder-resistant states at the interface between them,
that was recognized as a general principle of the bulk-
boundary correspondence.

The simplest lattice that exhibits topological modes
is Su-Schrieffer-Heeger (SSH) model, which describes
a one-dimensional (1D) dimerized chain with alternat-
ing weak and strong couplings between nearest-neighbor
sites, see schematic in Fig. la. The topological invari-

ant relevant to this model is winding number W, which
equals 1 if a map of the SSH Hamiltonian to the Pauli
matrix space [14-16] is a circle embracing its origin,
and thus can be associated with an arrow perform-
ing a 2m-rotation. By contrast, in the trivial arrange-
ment W = 0, and the cyclic evolution of the arrow tip
does not show a full rotation, so that the correspond-
ing map can be smoothly contracted into a point in
the parametric space (Fig.1b). The former case cor-
responds to the SSH chain terminated on a strong
bond with a dangling site, that supports a mid-gap
staggered edge state exponentially decaying into the
bulk.
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Table 1. Parallels between mathematical and physical quantities in electrodynamics and geometrical band theory [9]

Math Electrodynamics
base space r-space sphere
connection vector potential A(r)

covariant derivative
curvature

holonomy

For arbitrary periodic systems, the topology of a
band is determined by both eigenvalues €, (k) and eigen-
vectors |uy) of the bulk Bloch Hamiltonian as functions
of the wave vector k. According to notions of topology,
in the band theory of solids the parameter space (base
manifold) is the Brillouin-zone torus, and the fibers
are vector spaces corresponding to per-band subsets of
eigenvectors. The linear representation of the structure
group U (1), playing the role of gauge U(1) = exp (ip)
in electrodynamics, acts on fibers to produce a fiber
bundle over the Brillouin-zone torus. On vector bun-
dles there exists a local gauge-dependent feature called
the Berry connection A, (k) closely related to the prop-
erty of holonomy (Fig.1c) on smooth surfaces, which
allows one to obtain the angle of parallel translation of
a vector pinned to a surface along arbitrary path on
it; in a similar manner, the former realizes the paral-
lel transport of the vector bundles’ sections, the alias
for eigenvectors. The Berry connection naturally gives
rise to another local characteristic of a vector bundle —
the Berry curvature Q,(k) = Vg x A, (k), continu-
ously defined over the first Brillouin zone. The total flow
of the Berry curvature through the surface stretched
over the eigenvector evolution contour yields the geo-
metric (Berry) phase, which cannot be eliminated by
any gauge transformation of Hamiltonian. These three
quantities are the analogues of the vector potential,
magnetic field strength, and magnetic flux, respectively
(see Table 1). While the Berry connection and curva-
ture contain information about geometric properties of
underlying vector bundle, its global topology can only
be classified by topological invariants. The simplest il-
lustrative examples of nontrivial fiber bundles include
the M6bius band, which is locally indistinguishable of a
cylinder but globally differs from it as the the underly-
ing 2D strip is glued with a w-twist, Klein bottle, and
Hopf fibration. The cylinder with no twist is a trivial
bundle.

The most ubiquitous, in terms of characteristic topo-
logical invariants, are the Chern, Z5 topological insula-
tors, and topological gapless systems with degenerate
points or lines, otherwise called topological semimetals.
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gauge-invariant momentum —:iVy + A(r)
magnetic field strength B = V, x A(r)
Aharonov—-Bohm phase — ¢ dr - A(r)

Band theory
k-space BZ torus
Berry connection Ay, (k) = i(un|Viun)
projected position iV + A, (k)
Berry curvature 2, = Vi X Ap(k)
Berry phase § dk - Ap (k)

Chern topological insulators are characterized by the
first Chern number. For a particular band, it is de-
fined as an integral of Berry curvature over the first
Brillouin zone, C, = ! [5, d*k Q, (k). The non-zero
Chern number implies discontinuity of Berry connection
and emergence of the topological charge, which leads to
the non-vanishing geometric phase term in a eigenvec-
tor. For finite systems, the bulk Chern number accounts
for the number of unidirectional topologically protected
edge modes [2] (Fig. 1d). In two-dimensional Chern in-
sulators the TR symmetry is necessarily violated, for
example, by the magnetic field bias, and in finite Chern
TIs the propagation direction of topological edge states
is controlled by the sign of the total magnetic flux.

Another class is the Z5 topological insulators, which
can be considered as consisting of two copies of Chern
topological insulators with gauge fields acting on oppo-
site spins [2]. Such 2D systems are TR-invariant, and
therefore, the Chern number is zero. The topological
invariant for this class is defined as v = (Cy — C))/2
mod 2 and belongs to the Zs additive group of inte-
ger numbers, where the Chern numbers C},| are cal-
culated for the spin up/down subsystems. In the topo-
logically nontrivial case, v = 1, the Kramers partners,
time-reversed pairs of eigenstates, can be connected by
the odd number of edge modes only, which, being de-
generate at k = 0, traverse a band gap and cannot
be eliminated by any smooth deformation preserving
TR symmetry (Fig. le). In the topologically trivial case,
v = 0, the Kramers partners in the Brillouin zone are
connected by pairs of edge states and all of them may
thus be pushed into bulk bands.

In fact, it is the TR symmetry that ensures the topo-
logical stability of the edge states supported by quan-
tum spin Hall topological insulators, with spin-orbital
coupling, in the absence of spin-flipping process. How-
ever, one should keep in mind that while TR symmetry
alone is sufficient to guarantee the presence of degener-
ate spin-1/2 states in condensed-matter physics, owing
to Kramers’ theorem for fermions, this is not the case for
photons because they obey the bosonic quantum statis-
tics. Therefore, additional deliberately engineered sym-
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metries related to pseudo-time-reversal operators éb,
(fg = —1, (fb’;':{éb_l = H are exploited in photonics to
mimic the fermionic property of electrons 71? = —1,
with TR operator Ti = ic}yf( , and achieve time-reversal-
invariant topological order [7]. They include internal
symmetry of the electromagnetic field inside a photonic
structure or crystalline symmetries of a photonic lattice.
Such symmetries can produce modal degeneracies in a
band structure generating doublet states to emulate the
pseudospin degree of freedom, thus enabling photonic
analogues of the quantum spin-Hall effect [17].

Synthetic gauge fields for light can also be intro-
duced by periodic modulation of photonic crystal pa-
rameters in time or space. The effective magnetic field,
associated with the complex phase accumulation, can
thus force unidirectional propagation of photons with-
out the use of magnetic materials at optical frequencies,
in a way similar to electrons moving along skipping or-
bits along the edge in a two-dimensional magnetically-
biased electron gas.

Three-dimensional topological systems include
gapped topological insulators [18, 19| hosting sur-
face states with conical dispersion inside the band
gap (Fig.1f), and gapless Weyl semimetals [20, 12]
exhibiting linearly dispersing bands at the Weyl
points (Fig.le,h). Each Weyl point is characterized
by the Chern number of the eigenstate bundle over
the sphere embracing this point and represents a
source or sink of the Berry flux, similar to a magnetic
monopole. Importantly, the surface Brillouin zones
contain Fermi arcs connecting projections of Weyl
sink and source (diabolic) points, see Fig.1h. Each
diabolic point terminates the odd number of surface
Fermi arcs [21]. Besides the topologically protected
Fermi-arc surface states, photonic Weyl semimetals
may enable pronounced Hall effect for photons due to
diverging Berry curvature in the vicinity of Weyl points
[22]. An optical analog of the ideal three-dimensional
Weyl system was demonstrated by Yang et al. using a
microwave photonic crystal of saddle-shaped metallic
coils [12]. In the ideal Weyl system all the Weyl points
rest on the same equi-frequency surface being remote
far enough from any other bands (Fig.1le). Conical
dispersion around Weyl points implies the possibilities
for efficient manipulation of scattering cross section
[23]. Strong light-matter interactions combined with
vanishing density of states at Weyl frequencies further-
more suggest opportunities for the emission control of
quantum light emitters hybridized with photonic Weyl
semimetals.

2D photonic topological systems. Figure 2
shows the actual representative demonstrations of

two-dimensional topological photonic systems in their
historical sequence.

Following a theoretical proposal by Raghu and Hal-
dane [24-26], Wang et al. were first to realize the pho-
tonic counterpart of the quantum Hall effect at mi-
crowave frequencies [27]. In their experiment TR sym-
metry was broken by the magnetic field applied in a
square-lattice photonic crystal of gyromagnetic ferrite
rods confined vertically between two metallic plates to
mimic the TM-polarized modes in infinitely long cylin-
ders (Fig.2a,b). The resultant band structure hosts a
gapless chiral edge state that propagates around defects
with back scattering sufficiently significantly suppressed
and, by contrast, high transmittance within the band
gap shaded yellow in Fig. 2c.

However, the path with preserved TR appears pref-
erential in optics because magneto-optical response is
weak at optical frequencies. To create devices compati-
ble with subwavelength optical circuitry, it is more expe-
dient to use semiconductor materials, which are already
widely employed in photonics. Time-reversal invariant
topological effects were realised in lattices of coupled
ring resonators, waveguide arrays, nanophotonic meta-
surfaces and bianisotropic metamaterials.

A group from Maryland demonstrated topological
edge states at near-infrared wavelengths (1.55 pm) in
a two-dimensional square lattice of coupled silicon ring
resonators [28] whose diameters are much larger than
the wavelength of light (Fig. 2d). Each site ring supports
degenerate clockwise and counterclockwise modes, form-
ing a pseudospin degree of freedom, and a gauge field is
implemented via differing optical path lengths in auxil-
iary coupling rings. The link rings are placed asymmet-
rically between the site rings so that a photon hopping
along one direction travels a slightly longer path com-
pared to a photon hopping along the opposite direction.
Depending on the pumping direction, two different pseu-
dospins can be excited. The sign of the synthetic mag-
netic field depends on whether the clockwise or counter-
clockwise mode is considered. As a result, the observed
topological edge state in Fig.2e propagates around a
defect, which does not flip the spin.

Rechtsman et al. implemented a Floquet photonic
topological insulator by utilizing spatial modulation
along the propagation direction in a honeycomb waveg-
uide array [29]. The diffraction of light in straight laser-
written waveguide arrays can be described by the parax-
ial equation of waveguide mode evolution. Adding an
adiabatic helical twist to the waveguides leads to the
modified paraxial equation in the transformed coordi-
nate frame that contains the vector potential term. In
terms of coupled mode equations, the Peierls substitu-
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Fig.2. (Color online) First column: (a) — Demonstration of back- and side-scattering suppression of the edge wave when a
large obstacle is inserted in the array of magnetised ferrite rods emulating the quantum Hall topological phase; (b) — Real
photograph of the gyromagnetic photonic-crystal slab used in experiment; (¢) — Measured spectra confirm unidirectional
propagation in the edge waveguide with forward transmission (blue curve) being 50 dB greater than backward transmission
(red curve) at mid-gap frequencies. Second column: (d) — A fragment of the topological array of silicon ring resonators with
one site-resonator deliberately removed; (e) — Topological protection is experimentally demonstrated as light traverses around
the defect. Third column: (f), (g) — A triangle-shaped array of laser-written helical waveguides in glass acts as a photonic
topological insulator so that light excited at the corner (yellow circle) is guided along its surface and bypasses a defect,
created by a missing waveguide (blue arrow). Fourth column: (h) — A top view of a sample and (i) — Experimental image
of the third-harmonic generation from topological edge states in a nanostructured metasurface composed of expanded and
shrunken hexamers made of silicon pillars on a glass substrate. Timeline with years is shown on the bottom. Adapted from

[27-30]

tion in the presence of a vector potential then yields
a phase of the coupling constants between the evanes-
cently coupled nearest-neighbour waveguides. Thereby,
a band gap emerges in the Floquet quasi-propagation-
constant spectra, which was shown to accommodate a
chiral edge state. It was experimentally confirmed that
the edge mode excited at the corner waveguide propa-
gates robustly along the array’s boundary in one direc-
tion with suppressed backscattering from defects, such
as acute corners and missing site waveguides (Fig. 2g).

Motivated by optical on-chip applications, the most
recent realisations of topological phases in photonics
have advanced to the nanoscale. For example, nanopho-
tonic topological modes were designed and imaged via
third-harmonic generation by Smirnova et al. in topo-
logical arrays of silicon nanopillars [30]. In this meta-
surface, a topologically nontrivial domain of expanded
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hexamers, colored blue in Fig.2h, is embedded into a
trivial domain of shrunken hexamers, colored red, and
the frequency conversion is governed by the field lo-
calization at the topological domain wall, as shown in
Fig.2i. At the pump wavelengths within the photonic
bandgap, the edge states at topological interfaces are
spin-momentum locked and bend around corners with
suppressed backscattering. By tuning the pump wave-
length, it is possible to switch nonlinear light generation
between the domains, that directly visualizes band in-
version being a signature of nontrivial topology, and ob-
serve circular polarization state of the nonlinear diffrac-
tion from the metasurface sample in the far field.

Bianisotropy-based photonic TIs. Topological
states can be designed in artificial metamaterials by em-
ploying their bianisotropy. Bianisotropy, also known as
magneto-electric coupling, is the property of the par-
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ticle’s polarizability tensor or the material’s constitu-
tive relations such that the electric (magnetic) response
can be induced by the external magnetic (electric) field.
The electromagnetic dual symmetry between electric
and magnetic fields can be ensured by the structural
design to define pseudospin states, while bianisotropic
response is then used to break the degeneracy and
introduce an effective spin-orbit coupling. Such bian-
isotopy in Mie-resonant dielectric particles with over-
lapped electric and magnetic dipole resonances arises
due to the reduced spatial symmetry of the particle’s
shape [31-36]. It was proposed that metacrystals made
of bianisotropic disks can build up a weak 3D pho-
tonic TT capable of emulating the relativistic dynamics
of massive Dirac fermions and Jackiw-Rebbi states at
the interface separating domains with particles of op-
posite masses [35]. Robust surface states in topological
metacrystals can be used for reflectionless routing of
electromagnetic energy along arbitrarily shaped paths
in 3D space.

In a broader scope, engineering metamaterial prop-
erties allows creating synthetic photonic potentials
to flexibly control electromagnetic radiation, create
cloaked regions, filter and demultiplex light. For in-
stance, combined with another gauge field acting on the
valley degree of freedom, bianisotropy enacts the spin-
valley-polarized one-way transport [37].

Higher-order photonic TIs. Another class of
topological systems, higher-order topological insulators,
supports gapped boundary states but hosts topological
states of lower dimensionality, such as hinge and corner
states, as illustrated in Fig. 3a. By analogy to the mod-
ern theory of electric polarization [38-40], the higher-
order multipole topological insulators are described by
higher-order multipole moments inherently quantized
by lattice symmetries [42, 41]. Generalizing the bulk-
boundary correspondence, the electric quadrupole insu-
lators in the study of Benalcazar et al. [40] do not exhibit
gapless edge states but feature mid-gap topological cor-
ner excitations. The bulk quadrupole moment induces
edge dipole moments and corner charges. In photonics,
Mittal et al. [41] realized the quadrupole TT based on
silicon ring resonators (Fig. 3b) with judiciously tailored
couplings between on-site and link resonators such that
the total per-cell Berry flux and topological charge were
7w and nought, respectively. The quadrupole moment of
the bulk is quantized due to the presence of the reflec-
tion symmetries in the lattice [40]. In the topologically
non-trivial regime, when the inter-cell coupling strength
exceeds intra-cell one, there appear gapped edge dipole
states, which in their turn represent boundary TIs. Cor-
ners, being spatial defects for topologically nontrivial

polarization states, form the zero-dimensional bound-
ary of the 1D lattice boundary and host localized topo-
logical modes which belong simultaneously to the two
adjacent edges.

The topological invariants and quantized multipole
moments can be calculated using the nested Wilson loop
approach. Wilson loops represent generalization of the
one-dimensional Berry phase and are connected to the
eigenvalues of the position operator, thus to the gener-
alisation of the problem of polarisation in solids [40]. To
describe higher-order topology, it is instructive to define
a Wilson loop operator and construct Wannier Hamil-
tonian for each boundary. The original space of energy
bands, which can be degenerate at some high-symmetry
points of the Brillouin zone, is split into single-band sub-
spaces by picking out Wannier band subsets. Despite
being gapped, the Wannier bands can still posses their
own topological invariants which are calculated from the
nested Wilson loops’ behavior. This technique is applied
to evaluate the polarization of a boundary and quantised
corner charges.

Higher-order topological insulators without quan-
tized multipole moments are known as crystalline topo-
logical insulators. They are characterized by fractional
quantized bulk dipole polarization [43]. Such higher-
order T1s are easier to implement in subwavelength pho-
tonics, as they do not require the coexisting positive and
negative couplings [44, 45].

The corner states deduced from the model lattice
Hamiltonians with nearest-neighbour interactions are
conventional for condensed matter systems. But, in pho-
tonic systems, long-range interactions cannot be ne-
glected that may lead to the emergence of specific corner
modes dubbed as type-II [46].

Topological lasing. Other important distinction
of topological photonic systems from their Hermitian
quantum counterparts include the presence of absorp-
tion/radiation losses [47] or, conversely, optical gain. As
such, active topological cavities hold special promise for
a design of lasers. One of the cornerstone ideas is to em-
ploy a topologically protected mode as a lasing mode.
By this means, lasing process is expected to become
immune to perturbations of the system, such as local
deformations of a cavity. The first examples of topo-
logical lasers were 1D inspired by the non-Hermitian
SSH model described in [48]. The predictions of that
model were observed in a trio of experiments: in a
zigzag polariton lattice of micropillars [49], and ring res-
onator lattices with embedded InGaAsP/InP quantum
wells [50, 51]. Uniform pumping results in spatially delo-
calized multimode emission due to competition between
bulk modes, while pumping a single sublattice results in
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Fig. 3. (Color online) (a) — Corner and hinge states are the characteristic representatives of generalized bulk-boundary corre-
spondence relating multipole moments in N-dimensional bulk to the quantized charge/current carried by lower-dimensional
sub-spaces of bulk boundaries, i.e., with dimensionality reduced by more than one order. (b) — Schematic of the 2D lattice
with quantized bulk quadrupole moment. Thick (thin) lines connecting lattice sites (circles) illustrate strong (weak) coupling
strengths and their color indicates positive (green) and negative (red) sign of couplings ordered in the way that the net
gauge equal to 7 threads each unit cell. (¢) — Provided the inter-cell coupling exceeds the intra-cell one, the lattice exhibits
the quadrupolar topological phase and hosts zero-energy four-fold degenerate states in the corners. (d) — Experimentally
measured spatial intensity profiles of localized corner modes in topologically non-trivial lattice of silicon ring resonators [41].

Adapted from [41]

single mode lasing of the topological interface state as
long as the bulk bandgap remains open. Later, a topo-
logical laser was realized in a two-dimensional array of
micro-ring resonators with special coupling between the
rings designed to follow a topological model so that it
supports topological edge states. It was shown that a
pump localized to the edge sites is required to suppress
bulk mode lasing and induce stable single mode lasing
of the edge states [52]. For comparison, in similar non-
topological models, disorder tends to induce mode local-
ization, resulting in multi-mode lasing involving modes
localized at different positions along the edge. Topolog-
ical resilience helps to overcome Anderson localization
along the edge, thus producing modes that do not lo-
calize and can lase coherently [53]. The slope efficiency
can thus be improved compared to a simple linear array
of lasers.

The concepts of topology may serve as a sig-
nificant guiding scheme for the smart control of a
number, spectral separation, localization scales and
quality factors of edge, corner and defect modes in
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topological cavities for lasing [8]. This scope un-
derpins promising design principles in nanophoton-
ics. Particular experimental implementations of ac-
tive nanophotonic topological metasurfaces, shown in
Fig.4, are based on indium gallium arsenide phos-
phide (InGaAsP) membranes incorporating quantum
wells that act as a gain medium and serve as an
internal light probe in the near infrared [54, 55].
The metasurfaces were fabricated using electron-beam
lithography and subsequent dry and wet etching to
suspend a membrane. The semiconductor slabs were
nanopatterned to imprint the valley-Hall (Fig.4, top
row) and 2D SSH (Fig. 4, bottom row) lattices of air
holes.

Figure 4a shows a small-scale triangle-shaped topo-
logical cavity based on the closed valley-Hall domain
wall created by inversion of staggering the sizes of tri-
angular air nanoholes in a bipartite honeycomb lattice.
In the bandgap frequency range, the cavity supports a
discrete spectrum of modes confined to the domain wall.
Figures 4b, c show real-space emission profiles below and
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Fig.4. (Color online) Lasing in nanophotonic topological cavities. (a) — SEM image of the fabricated sample. False-colour
triangle shades the interior of the valley-Hall topological cavity. (b), (¢) — Spatial distribution of emission for the pump in-
tensity (b) below and (c¢) above the lasing threshold. (d) — Emission power vs. pump power showing a threshold transition to
lasing. (e) — SEM image of the fabricated square-shaped cavity. (f) — The photonic bandgap of the infinite periodic structure
opens in a wavelength range around 1550 nm and comprises 4 corner and 4 edge modes for bounded lattice. (g) — Dipolar
lasing from coupled corner states: schematic visualization (top), measured mode images (bottom). Adapted from [54, 55]

above the lasing threshold. In the regime of sponta-
neous emission enhancement along the entire perime-
ter of the triangular cavity is associated with the edge
states. When increasing a pump power, there occurs a
threshold transition to lasing with a narrow linewidth,
the emission gets confined at the three corners. This
triade lasing mode emerges depending on the degree of
asymmetry between two air holes.

The topological cavity in Fig. 4e contains a square-
shaped domain wall separating nontrivial inner and
trivial outer domains, created by inverting the or-
der of smaller and larger distances between square air
holes [55]. Given coupling of the corner states, four
multipolar corner modes can be distinguished in the
spectrum Fig.4f, namely, the quadrupole, two degener-
ate dipoles, and the monopole. Photoluminescence mea-
surements for the cavity were performed using a 980-
nm pulsed pump laser at room temperature, and four
lasing modes with different wavelengths were identified
by employing hyperspectral imaging. The measured im-
ages of lasing modes were found to corroborate calcu-
lated electric-field intensity profiles of the corner-state
modes (Fig.4g). The multipolar corner-state lasing was

observed even when a defect was introduced at the in-
terface between the trivial and nontrivial domains close
to the corner.

Outlook. Topological photonics is likely to con-
tinue to be a highly active and flourishing area of re-
search for the next decade. It proves itself not only
useful for classical light control but also promising
for a variety of quantum optical applications [56, 57].
Robustness and backscattering suppression offered by
topological structures are paramount for the quan-
tum optics, when each photon counts. Fabrication im-
perfections and scattering losses typical for the inte-
grated photonics platform limit performance and scala-
bility of such devices. Topological photonics can help
to overcome these obstacles paving the way for ro-
bust quantum light sources and protected photon states
on a chip. To date, several remarkable demonstrations
have already been made, including topologically pro-
tected single-photon states [58, 59|, correlated bipho-
ton states [60-62], as well as topologically protected
entangled photon states both for path- and time-bin-
entanglement [63, 64]. We anticipate harnessing topo-
logical photonic phases in nonlinear and quantum op-
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tics [8] will drive the cutting-edge developments in quan-
tum technologies.

Links are being established between topological pho-
tonics and other frontier topics, including bound states
in the continuum [65], structured light [66], and trans-
formation optics. The high-quality-factor topological
modes can be employed in nanolasers with superior sta-
bility, in the exotic manipulation of local optical heat-
ing for the purposes of optical nanothermometry [67]
and hybrid polaritonic metasurfaces. For instance, it
was proven that integration of InSe films with resonant
photonic structures enables enhancing the quantum out-
come of excitonic emitters in the former [68]. By in-
tegrating excitonic reservoirs with topological cavities,
quantum emission can be tailored, directed and selec-
tively generated with a specific handedness.

Intriguing opportunities also arise in the field of op-
tical computing. It has been shown that the concepts of
topological photonics can be applied for the purpose of
achieving spatial differentiation in edge detection appli-
cations [69-71]. New advances can be expected at the
intersection of topological physics with integrated pho-
tonic systems for optical neuromorphic computing [72].
It can open prospects for novel image processing devices
with ultrafast operation speed and low energy consump-
tion.
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