
Abstract. Physical limitations on the operation speed of elec-
tronic devices has motivated the search for alternative ways to
process information. The past few years have seen the develop-
ment of neuromorphic photonicsÐa branch of photonics where
the physics of optical and optoelectronic devices is combined
with mathematical algorithms of artificial neural networks.
Such a symbiosis allows certain classes of computation prob-
lems, including some involving artificial intelligence, to be
solved with greater speed and higher energy efficiency than
can be reached with electronic devices based on the von Neu-
mann architecture.We review optical analog computing, photo-
nic neural networks, and methods of matrix multiplication by
optical means, and discuss the advantages and disadvantages of
existing approaches.

Keywords: neuromorphic photonics, artificial intelligence, machine
learning, reservoir computing, matrix±vector multiplication,
photonic computing, neural networks, optical coprocessor, photo-
nic tensor computing, optical Fourier transform, integrated photo-
nics, Mach±Zehnder interferometer, ring resonators, waveguides

1. Introduction

The 21st century is inextricably related to the information
technology (IT) industry. The explosive increase in the
volume of information after the advent of social networks,
the trend towards cloud-based data storage, the development
of Internet resources and the entertainment sector, and
increased security of banking and financial transactions

stimulated the development of new methods and algorithms
for processing and transmitting data, includingwith the use of
light [1]. The rapid expansion of IT in all areas of activity
requires a considerable amount of computing resources and
power, which in turn gives rise to urgent tasks to accelerate
processors, develop new computer architectures, reduce
energy consumption, and miniaturize systems [2±5]. A
number of these problems can be solved by using photonics
[6], which is attracting the attention of scientists due to the
high frequency of electromagnetic waves, a wide bandwidth,
and the possibility of parallelization. In addition, progress in
industrial manufacturing technologies for microprocessors
and optoelectronic components has led to the appearance of
private companies ready to design integrated photonic chips.
Such devices are in demand because of the formation of the
optical computing market due to the increasing number of
customers interested in upgrading their fiber optic commu-
nication lines and data centers. An increase in the number of
consumers leads to economic growth in this area, and mass
production reduces the production costs for photonic ele-
ments.Mathematical operations can then be performed faster
and implemented more easily and cheaply, not electronically
in digital form, but using analogue optical signal processing.
This stimulates the development of neuromorphic photonics
[7].

Photonics methods can be successfully used to comple-
ment electronic processors. A light signal, especially in free
space, has physical properties that are valuable for computa-
tion. With the help of optical systems, using lenses, it is
possible to carry out the Fourier transform, use the phenom-
enon of interference to add complex quantities, use the
phenomenon of diffraction to transform the original signal,
perform a nonlinear quadratic transformation during detec-
tion, and add the intensities [8±10]. In addition, whenworking
with wide inhomogeneous parallel beams whose cross section
represents a multidimensional matrix, it is possible to operate
on the entire matrix at a speed independent of its size. These
properties of an optical signal carrying information allow
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speeding up, first and foremost, the operation of vector±
matrix andmatrix±matrix multiplications, which underlie the
operation and training of multilayer neural networks.

Bottlenecks in using an optical coprocessor are data input
and output operations [11]. Digital-to-analogue and analo-
gue-to-digital converters (DACs and ADCs), together with
wiring, are often the limiting factors in terms of both speed
and power consumption. The advantage of optical methods is
the possibility of parallel processing of information and
working with high-resolution images.

The purpose of this review is to describe the methods
developed for photonic computation and matrix multiplica-
tion by optical means, and to consider modern approaches to
the implementation of photonic neural networks.

2. Optical computation
on an integrated photonics platform

2.1 Vector±matrix operations and their implementation
by integrated photonics methods
Integrated photonics is one of the most promising platforms
for implementing optical computations on an industrial scale.
The key factor is that such devices can be built based on the
hardware component of the existing microelectronics indus-
try using well-established semiconductor technology meth-
ods. According to Yole Group research [12, 13], the
integrated silicon photonics market will increase to nearly
$4 billion by 2025, while hardware accelerators and photonic
interposers (silicon chips whose main role is to electrically
connect the tracks between the memory and the processor)
can occupy a significant part of it thanks to major players
such as Nvidia. At the moment, there are a number of
companies producing custom silicon-based integrated photo-
nic chips on a silicon nitride insulator, but the key difficulties
still lie with lasers on a chip (combining silicon with III±
V semiconductors) and combining photonics and CMOS
(complementary metal±oxide±semiconductor) electronics in
a single device. Many manufacturers have already achieved
significant progress, as can be seen from recent announce-
ments, e.g., by Global Foundries [14]. Among the companies
specializing in solutions in the field of hardware accelerators
based on integrated photonics, we note American Light-
Matter, Lightelligence, and Fathom Computing, and the
British Salience labs. The most common operation to be
accelerated is vector±matrix multiplication, but there are
also examples of combinatorial problems being solved [15].
Photonic hardware accelerators based on a platform of
integrated photonics can be built directly into network
solutions, for example, in large data centers, where commu-
nication between computing clusters is realized via optical
interconnects. This provides an additional advantage com-
paredwith cloud computing tasks and tasks to ensure security
and prevent cyber attacks [16].

2.1.1 Various architectures of photonic hardware accelerators
and their features. Most often, three main architectures are
distinguished for implementing vector±matrix calculations
using integrated photonics: (a) a photonic network based on
Mach±Zehnder interferometers (MZIs), similar photonic
matrices being used in implementations of optical integrated
quantum computers; (b) a photonic network based on
microring resonators; (c) a crossbar array photonic network
involving optical memristors, the topology of a fully con-

nected coupling matrix based on a matrix commutator. The
matrix is called fully connected because any input port can be
connected to any output port, as in memristive electrical
circuits. The first architecture is characterized by its versatility
and low sensitivity to manufacturing errors, but it requires a
large number of elements and occupies a large area on the
chip, with a negative effect as regards scalability. The second
architecture, based on microring resonators, can be imple-
mented in a much more compact design; it is initially
optimized for parallel operation with wavelength division
multiplexing (WDM), but is very sensitive to deviations in
manufacturing and requires special tuning (passive or active).
The crossbar array architecture also has the advantages of
workingwithWDM, the possibility of being implemented in a
compact form factor, and not suffering from variations in
manufacturing parameters, but is limited by the efficiency of
cross-connects and splitters, which incur high optical loss and
reduce the ability to scale the photonic circuit for real-world
applications. We discuss each of these architectures in more
detail.

2.1.2 Photonic matrix based on Mach±Zehnder interferom-
eters.The first and currently most common architecture is the
MZI photonic matrix, which allows realizing any predefined
matrix (for example, the weight matrix for a fully connected
neural network or the kernel matrix for convolution neural
networks). It is known that, using the singular value
decomposition, any matrix can be represented as a product
of two unitary matrices and one diagonal matrix,

M � UZVT ;

whereM is the original matrix,U and V are unitary matrices,
and Z is a diagonal matrix. A unitary matrix can in turn be
represented as a product of rotation matrices (Fig. 1),
implemented using a grid of integrated MZIs [17]. This
approach is also widely used in optical quantum computing
problems (for example, quantum normalization) both on a
chip and in three-dimensional execution on an optical table.

Each 2� 2 interferometer can be described by a rotation
matrix
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Figure 1. Representation of a unitary matrix in the form of an MZI grid.

Each site is a 2� 2 interferometer whose properties are determined by the

external and internal phase in one of the arms (j and y) [17].
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Following the procedure described in [17], it is possible to
build a photonic network of similar interferometers corre-
sponding to any unitary N�N matrix [18]. In total, this
requiresN�Nÿ 1�=2MZI elements (Fig. 2). To represent any
matrix in accordance with its singular value decomposition,
two such grids are required together with an intermediate
layer of amplitude modulators that implement the diagonal
matrix. An additional layer of phase modulators is needed to
correct the first unitary matrix. This must be done in the case
of a physical implementation of the entire matrix M, but one
MZI network is often used in practice for sequential
realization of the U and V matrices (in which case phase
correction is not necessary).

In addition to the photonic MZI matrix itself, a device is
also required to generate the input vector encoded in the
amplitude of the light wave in each grid channel. For this, an
external laser source of continuous generation is divided into
the required number of inputs, in each of which an amplitude
modulator is installed, controlled by an external electrical
driver that uses a DAC to fix a sequence of data taken from
memory. The phases of the photonic MZI matrix are also
fixed by similar drivers in accordance with a similar
procedure. The light passing through the photonic matrix is
detected by photodiodes, which then transmit the signal
through transimpedance amplifiers to the ADC. Converters
return it to the digital representation and store the data in
external memory.

The main limitation on the operating frequency of the
device is the maximum frequency of the DAC±ADC drivers.
Themodulators themselves can operate at frequencies of tens,
and, in the future, even hundreds of GHz. Therefore, fast and
energy-efficient low-resolution DAC±ADCs are often used.
Significant gains in speed and reductions in energy consump-
tion can be achieved only for problems where the same weight
matrix can be multiply reused (as in the case of convolutional
neural network problems, where the convolution kernel is
fixed) and a parallel computation at several wavelengths is
possible. Due to manufacturing errors, together with noise
and deviations in the device operation, the currently existing
solutions work with low-bit numbers (up to 8 bits), but this is
sufficient for a wide range of problems.

The first architecture implemented in hardware accelera-
tors for deep machine learning tasks was proposed by the

group of Marin Solja�ci�c in [19]. As a model, a fully connected
neural network was considered that classifies input data (a
light signal encoding sound sequences corresponding to
different letters). The network consisted of two layers
corresponding to the multiplication of the input vector by
weight matrices, with an intermediate nonlinear activation
layer implemented separately using a standard microproces-
sor. The vector±matrix product was done using a photonic
matrix, while oneMZI networkwas used twice to sequentially
define two unitary matrices (OIU1 and OIU2, Fig. 3). The
network was pretrained using the standard backpropagation
method on a computer, after which, using the found weights,
the phases j and y were calculated for each MZI forming the
photonic matrix (following the method described in [17]). The
accuracy of solving the classification problem in such a
system was about 77%, compared to 91% obtained using a
standard central processor. Low efficiency may be associated
with a number of factors, among which it is worth noting
thermal induction in MZI elements from neighboring cells,
the final accuracy of fixing the phases in different arms of the
interferometers, detector noise during reading, and deviations
of the geometric parameters of the structure from the model
ones during manufacturing. Errors can be corrected in an
already fabricated structure [20], which can potentially
improve the accuracy of the classification problem in such
devices.

Mach±Zehnder interferometers, LightMatter project. One
example of the commercial implementation of this architec-
ture was presented by the American company LightMatter,
which was founded by former graduates of Solja�ci�c's group.
To date, the company has registered more than 30 patents
related to photonic hardware accelerators based on inte-
grated optoelectronic devices. The current product is the
Envise processor [21], presented on the company's official
website, with specifications and bench test results (Fig. 4).
The main part of the device is made of two MZI-based
photonic matrices, manufactured using silicon technology of
the 90-nm standard. The light source is represented by an
external laser; radiation is transmitted to the chip via an array
of optical fibers. The optical core is combined with an
electronic logical CMOS chip manufactured using 12-nm
technology. This chip is based on the RISC-V architecture
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Figure 2. Schematic representation of the architecture of a photonic accelerator based on an MZI. Network of interferometers implements one unitary
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shown in blue [18].
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and contains up to 256 computing cores. The chip also houses
SRAMmemory with a capacity of up to 500MB.Data can be
presented in various formats; it is possible to work with 8-bit
and 16-bit representations. In addition, options are available
for integration with the most popular software platforms
(PyTorch and TensorFlow). Such a hardware accelerator can
be used for server solutions, and the key operations are
vector±matrix and tensor calculations. High operating speed
and low power consumption are achieved due to a number of
factors, among which we note WDM (up to eight parallel
channels) and NOEMS (nano-opto-electro-mechanical sys-
tem) micromechanical integrated modulators [22±24], which
significantly reduce the power consumption compared to
thermo-optical modulators, as well as modulators based on
carrier injection, while providing a high switching frequency
of up to 1 MHz. In addition, this modulator allows
significantly increasing the MZI density on the chip due to
its compact size (about 25 mm). We also note that, to ensure a
high frequency of operations (sampling), high-speed DAC±

ADC modules with medium resolution (8- or 16-bit data
representation) are used. This can be justified in most
machine learning and artificial intelligence applications,
where a coarser representation of the data does not affect
the final accuracy of the problem solution [25, 26].

Mach±Zehnder interferometers, Lightelligence project. A
similar hardware solution is being developed by Lightelli-
gence [27], which is also affiliated with Solja�ci�c's group. As
with Envise, an MZI array is used to implement a 64� 64
photonic matrix. The transition between the digital electronic
and analogue photonic domains is implemented using a
microelectronic CMOS chip. The technology for combining
chips is so-called flipchip bonding, which allows placing all
the necessary elements on a single platform. The current
product is the PACE (Photonic Arithmetic Computing
Engine) hardware accelerator [28], operating at a system
clock frequency of up to 1 GHz (Fig. 5). As with Envise, the
main operation is vector±matrix multiplication, but, among
the key tasks, the company highlights Max-Cut, Min-Cut,
and the Ising problem, in which the authors promise
acceleration up to three orders of magnitude compared to
standard GPU-based solutions. A possible strategy proposed
by Lightelligence to scale the technology is not the use of
standard MZIs but of multimode interferometers, including
those designed via inverse optimization of their shape [29].

2.1.3 Integrated optics: microresonators. In contrast to optical
computing circuits with logic elements based on MZIs, the
same circuits made of resonators allow not only controlling
the signal with the power and/or phase of the original (or
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control) signal but also ensuring control and selectivity due to
wavelength, in one form or another. Such schemes are often
more compact than interferometric ones, because they allow
one waveguide to be used for different channels encoded by
the radiation wavelength.

Figure 6 illustrates typical layouts for incorporating a ring
resonator into an optical circuit [30]. Direct waveguides are
usually referred to as buses; the number of buses determines
the mode in which the device can operate. One bus turns the
microresonator into a frequency filter that does not transmit a
signal in the vicinity of wavelengths corresponding to the
resonator eigenvalues. The second bus, in turn, allows either
the signal to be output from the resonator and transmitted
further or an additional signal to be introduced into the ring,
which affects the phase and power values at the output, thus
making a kind of optical transistor.

For such circuits to operate efficiently on a large scale, the
resonators must have high quality factors (about 107±108)
and the buses must ensure low radiation losses during
propagation. The quality factor of a resonator, as well as the
throughput of the buses, depends on the geometric para-
meters (height, width, and radius) and thematerials used. The
choice of materials is wide, from silicon and its compounds
to polymeric substances. The efficiency of signal introduc-
tion and output from the bus to the resonator and from the
resonator to the bus is determined by the coupling
constant, which can be controlled by changing the dis-
tance between the ring and the waveguide. All the
parameters described above also depend on the wave-
length of the radiation transmitting the signal. Thus,
when designing resonator circuits, the parameter optimiza-
tion problem must be solved and the signal radiation
wavelength must be chosen.

2.1.4 Photonic crossbar matrix based on phase-change materi-
als for mode switches. The third microarchitecture option is a
crossbar array-type photonic matrix. This version of a
photonic accelerator was first presented in [31] by Harish
Baskaran's group. The key element of the structure is a
nonvolatile photonic memory based on a phase-change
material (PCM) [32]. Using such memory, the elements of
the photonic matrix (transmittance and reflection coeffi-
cients) can be fixed, which allows significantly reducing
energy consumption in the case of its repeated use without
the need for updating, for example, in convolution problems
with a known kernel (in convolutional neural networks). The
photonic processor structure is shown schematically in Fig. 7.
A similar architecture is used by the British company Salience
labs, which was founded by graduates of the above-men-
tioned scientific group. A similar crossbar architecture was
also mentioned in a patent [22].

In that study, the radiation source was chosen as an
optical comb realized on an integrated chip based on silicon
nitride under microring resonator pumping. Also, several
lasers at different wavelengths could be used, with their
radiation multiplexed before introducing it into an optical
chip. Each channel is independently modulated in amplitude
(in accordance with the values transmitted from external
memory through the DAC), after which radiation at several
wavelengths is introduced into each input waveguide of the
photonic matrix. The input vector, encoded using the
amplitude of the light wave in each horizontally oriented
channel of the photonic matrix (X1±X4 in Fig. 7), is then
divided equally between the vertical channels. For this, the
division ratio of the DC dividers increases from the left edge
to the right, so as to ensure the necessary fractions. It is worth
noting that DC dividers are the most problematic element of
the photonic matrix, because, first, they have significant
dispersion and divide radiation at different wavelengths
unevenly, and second, they are highly sensitive to the spread
of geometric parameters during manufacturing. The second
circumstance must be taken into account for the correct
operation of the accelerator; in particular, a special normal-
ization of the photonic matrix elements of the already created
device must be used. New efficient dividers developed using
machine learning and genetic optimization approaches could
also be helpful in solving such problems.

After the input vectors are divided, they are weighed using
PCM units. In different phase states, these materials have
different absorptions: in amorphous states, it is typically
lower than in crystalline ones. In addition, due to optical
rearrangement, i.e., local heating during the propagation of
nanosecond pulses through the unit, stable intermediate
states with partial crystallization or amorphization can be
achieved, which allows controlling the transmission in each
waveguide with a certain accuracy through fixed levels (in the
study under discussion, with discretization up to 5 bits). Thus,
each element of the input vector experiences a certain
attenuation in accordance with the weights of the assumed
filter matrix. After that, radiation from different horizontal
channels is mixed in vertical waveguides and enters the
detector, having previously undergone a demultiplexing
procedure during parallel operation at several wavelengths.
The signal from the detectors after the transimpedance
amplifier enters an ADC, and the result is then transferred
to the external memory of the device. As with previous
architectures, the ADC±DAC accuracy and speed are the
performance limiting factor in photonic accelerators. Accord-

Figure 5. PACE optoelectronic hardware accelerator from Lightelligence

[28].

Iin Itrans
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Iin Itrans

Idrop
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Figure 6. Two basic configurations of microring resonators: (a) simple

connected microring, (b) doubly connected microring [30].
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ing to [31], such a device is capable of performing up to 1015

MAC operations per second with an energy consumption of
about 20 fJ per operation (taking only optical losses into
account). However, the problems listed above and additional
external wiring must also be taken into account, which can
significantly reduce the expected performance and increase
the energy consumption of the entire system.

An extension of the presented architecture can be
exemplified by an approach involving not only different
wavelengths in WDM multiplexing but also different mode
states in integrated optical waveguides. This idea was
proposed in [33]. The key difference from the preceding case
is the use of a nanostructured metasurface of a phase-change
material instead of a continuous layer on the waveguide
(Fig. 8), which allows not only using an additional degree of
freedom but also achieving a larger number of stable levels
when tuning (with a 6-bit discretization rather than a 5-bit
one in the preceding study). The size of individual metasur-
face elements is selected so as to match the effective refractive
indices for the TE0 and TE1 modes of a multimode silicon
nitride waveguide in the crystalline state of the material.
When the phase state of the material changes, the matching
worsens, resulting in the preservation of the mode composi-
tion in the passing light wave. Thus, by changing the state of
the metasurface through intermediate levels, it is possible to
vary the radiation mode contrast. This is used to specify the
photonic matrix elements instead of the usual transmission,
as was implemented in the preceding study.

Combining suchmetasurfaces into a crossbar array allows
considering it as a photonic processor for vector±matrix
calculations (Fig. 9). The WDM approach is also used here,
and the circuit itself works on similar principles. According
to [31], such a device is capable of performing up to
164 teraoperations per second, but it is worth recalling that
all the difficulties outlined above for a photonic crossbar
array are relevant in this case as well. In addition, the
metasurface is also sensitive to the radiation wavelength,
which affects the options for scaling the system with respect
to spectrum (the number of WDM channels that can actually
be used in parallel without degrading the accuracy of the
calculations).

2.2 Photonic Ising machine on an integrated platform
Examples of photonic accelerators for high-performance
computations are not limited to MAC operations. Another
relevant application could be solving combinatorial pro-
blems, such as determining the maximum cut of a graph
(MAX-CUT). In particular, in [34], an integrated photonic
accelerator for the Ising problem was demonstrated based on
theMZI grid architecture discussed above. Particular interest
in this problem is motivated by the possibility of reducing
many popular combinatorial problems to the Ising problem
[35]. The operating principle of a photon accelerator for the
Ising problem is schematically shown in Fig. 10. At each
algorithmic step, the spin state vector encoded using
amplitude modulators in each waveguide channel is received
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at the input of a photonic accelerator. The radiation
corresponding to a given vector passes through a photonic
matrix consisting of MZIs implementing the Ci j matrix
related to the original spin coupling matrix Ki j. At the output
of the matrix, the result is contaminated with Gaussian noise
with a standard deviation j, which can be implemented in
both optical and electronic forms. After this, using a thresh-
old function, a new state vector is formed, which again arrives
at the input of the photonic matrix. After many iterations,
regardless of the initial vector, the result converges to the
Gibbs distribution for a particular spin coupling matrix.
According to [34], when operating at a frequency of the
order of 1 GHz, the energy per operation scales as 9=N pJ,
where N is the number of spins in the problem, whereas a
standard GPU shows a value of the order of 2.2 pJ per

operation. However, it is worth noting that, as in the case of a
photonic matrix for matrix multiplication, the limit value of
N is bounded by optical losses, which increase sharply with
increasing matrix size. Currently, there are references to an
experimental implementation of 64 input channels, but
further scaling may be difficult in the framework of the
presented architecture and existing photonic chip elements.

3. Optical computations in free space

3.1 Diffraction neural networks
The propagation of electromagnetic radiation in space is
described by the wave equation [36]. During propagation,
radiation undergoes spatial changes: diffraction occurs. If the
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electromagnetic field distribution U�x; y� in a plane P is
known, then the field distribution U 0�x 0; y 0� in a plane P 0

located at a distance z fromP can be found in accordancewith
the Huygens±Fresnel principle as [37]

U 0�x 0; y 0� � z

il

� �
P

U�x; y� exp �ikr�
r 2

dx dy ; �1�

where r � �z 2 � �xÿ x 0�2 � �yÿ y 0�2�1=2. Formula (1) can be
rewritten as

U 0�x 0; y 0� �
��

P

U�x; y� f �xÿ x 0; yÿ y 0� dx dy ;

where f �xÿ x 0; yÿ y 0� � z exp �ikr�=�ilr 2�. This expression
is equivalent to the formula for the convolution of two
functions. Thus, the propagation of the field distribution
U�x; y� in free space over a distance z is equivalent to applying
the convolution operation with a fixed kernel.

This unique property of electromagnetic radiation
allowed the development of an all-optical neural network,
the diffraction neural network (DNN) [38]. Its basic idea is
shown in Fig. 11. The network consists of an amplitude mask
at the input (input level in Fig. 11a) and several phase
(amplitude±phase) masks. The coherent radiation illumi-
nates the amplitude mask, which defines the input field
distribution. In the study under discussion, handwritten
numbers from the MNIST (Modified National Institute of
Standards and Technology) dataset were used as images [39].
Furthermore, according to the Huygens±Fresnel principle,
each point of the amplitude mask is a point-like source of
secondary waves. Their interference forms the field distribu-
tion on the first phase mask located at a certain distance.
Phase masks consisted of individual pixels that introduced
some phase delay at each point in space. Each pixel of the
phase mask in turn acts as a point-like source of secondary
waves, and this continues throughout the entire DNN. Phase
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masks allow the interference condition for secondary waves
to be controlled, which ultimately allows obtaining the
desired field distribution at the DNN output. In particular,
the authors solved the problem of classifying handwritten
digits from the MNIST dataset (Fig. 11b). For this,
10 detectors were placed at the output of the DNN,
corresponding to numbers from 0 to 9. The number of the
detector at which the maximum intensity was observed was
used as a prediction made by the DNN.

To understand which phase masks need to be used to
successfully solve the classification problem, the authors
implemented and trained a DNN on a computer. They then
experimentally implemented a DNN made of five phase
masks for electromagnetic radiation with a frequency of
0.4 THz. Each phase mask consisted of 200� 200 neurons,
each 400 mm in size, and the distance between the masks was
3 cm. The masks were fabricated with a 3D printer, and the
required phase delay was introduced by the thickness of the
material. As a result, the experimentally implemented DNN
shows an accuracy of 88%with the calculated accuracy given
by 91.7%.

A DNN differs from standard deep neural networks by
being a physical and completely optical network. In addition,
it has some special features in its architecture. First, the input
signals to neurons are complex-valued, determined by wave
interference and the complex transmittance/reflectance of all
masks. Second, the individual function of a neuron is to
phase- and amplitude-modulate its input signal to generate a
secondary wave, in contrast to other nonlinear functions of a
neuron (a sigmoid, ReLU, or the hyperbolic tangent) used in
modern deep neural networks. Third, the output signal of
each neuron is delivered to the next-layer neurons (phase
mask) via wave propagation and coherent (or partially
coherent) interference, providing a unique form of inter-
connection within the network. For example, it is well
known that, in modern convolutional neural networks, the
receptive field is controlled by the dimension of the convolu-
tion kernel and the number of successive convolution
operations. In a DNN, the perceptual field depends on the
axial distance between different phase masks and the spatial

and temporal coherence properties of the source of illumina-
tion. The secondary wave of each neuron is theoretically
scattered at all angles, in principle affecting all neurons of the
next layer. However, for a given distance between successive
DNN layers, the intensity of the wave emitted by a neuron
attenuates to below the detection noise level after a certain
distance, which effectively defines the DNN perception field
and can be physically tuned by changing it between network
layers, by the intensity of the input optical radiation, or by the
coherence length and diameter of the light source.

In addition to classification problems, DNNs successfully
solve optical computing problems, such as implementing a
controlled optical gate [40]. For this, the authors used aDNN
consisting of two amplitude±phasemasks. At theDNN input,
the amplitude mask that specifies the necessary logic opera-
tion and operands was placed (Fig. 12a). For the demonstra-
tion, the NOT, OR, and AND operations were selected and
the electromagnetic radiation frequency was fixed at 17 GHz.
The role of amplitude-phase masks was played by metasur-
facesÐ structured surfaces with the property that their
parameters of reflection are determined by the collective
effects of a specially created structure. The transmission of
each pixel was determined by the thickness of the material
(Fig. 12b). Furthermore, depending on the distribution of the
field passing through the input amplitude mask, the radiation
was focused in one of two areas of the output screen
corresponding to the logical 0 and 1. Thus, the implementa-
tion of logic operations was essentially reduced to a binary
classification of the input field distribution. The experi-
mentally implemented DNN successfully coped with
calculating the result of all logic operations, and the
contrast between signals from the areas corresponding to
the correct and incorrect result of the operation did not fall
below 9.6 dB. The idea proposed by the authors can be
extended to all basic binary logic operations, and the
wavelength can be shifted to the visible or infrared
ranges. The advantage of this approach is that a multi-
functional logic gate is implemented not as a set of
individual gates but as a single gate that can easily be
controlled by the input field distribution.
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DNNs are capable of processing an optical signal with a
wide spectrum, i.e., in parallel for many wavelengths [41]. The
authors showed that varying the loss function of a neural
network allows achieving the desired functionality, such as
spectrum filtering or (de)multiplexing. As an example, they
took a pulse with an initial frequency of 0.25 THz and a final
frequency of 1 THz, passing through a three-layer DNN.
They showed that a narrow-band filter could be implemented
with a fixed central frequency and the quality factor
determined by the DNN loss function. To achieve this goal,
the DNN was trained to focus radiation with a given
frequency into an output aperture 2 mm in size. This idea
can be extended to multiple frequencies that can be focused
either into a single output aperture (multibandwidth filter) or
into different output apertures depending on the wavelength
(analogous to a spectral demultiplexor). In addition, chang-
ing the distance between the DNN layers allows shifting the
central filtering frequency of the already manufactured DNN
layers. This implementation of a DNNmay be in demand for
problems of optical information processing.

A comprehensive analysis of the DNN performance in
image classification problems is presented in [42]. First, the
authors show the effect of several parameters on the final
accuracy of the DNN. In particular, they demonstrate that
the loss function used in the DNN training process has a
decisive effect on the final classification accuracy. For
example, replacing the mean-square error function with
cross entropy allows increasing the accuracy of a five-layer
DNN from 91% to 97% in MNIST data, and from 81% to
89% in FashionMNIST data [43]. However, such an increase
in accuracy is accompanied by a drop in the output radiation
intensity from the DNN, because, when using cross entropy,
the network learns to transform the incoming image such that
the detector corresponding to the relevant class, e.g., the
number 1, receives more radiation than other detectors, but
no conditions are imposed on radiation that does not reach
the detectors. The authors also examined the dependence of
DNN accuracy on the separation between network layers and
found that, when it decreases from 40 to 4 wavelengths, the
accuracy in the MNIST dataset dropped by 3%. Second, the
authors show that a DNN can be connected to a standard
`digital' neural network such that the classification accuracy
of the MNIST and Fashion MNIST datasets increases to
99% and 90%, which is comparable to the accuracy of
modern fully digital neural networks. It is worth noting that
the energy consumption of modern digital convolutional
neural networks is of the order of 10ÿ3ÿ10ÿ4 J/image (for
the ResNet network [44, 45]), while a hybrid DNN consumes
about 10ÿ9 J/image.

The dependence of the DNN operation quality on the
number of layers was studied theoretically in [46]. The
complexity of the DNN and its ability to produce arbitrary
transformations of incident radiation were studied there. The
matrix defining the optical transformation was shown to have
the rank given by the product of the number of pixels at the
input times the number of pixels at the output of the DNN. A
DNN made of a finite number of layers corresponds to a
lower-rank matrix in general. As the number of layers
increases, the rank of the DNN matrix increases linearly
with the number of layers until it reaches the maximum
permissible value. Thus, implementing a DNN with the
greatest learning ability, i.e., with the greatest complexity,
requires increasing both the number of layers and the number
of pixels (neurons) at the DNN input and output.

To implement a DNN in the visible range, metasurfaces
were proposed in [47]; they are dielectric structures consisting
of elements of a subwavelength size. Ametasurface consisting
of parallelepipeds made of TiO2 was considered in [47].
Because the parallelepiped is asymmetric with respect to the
orthogonal axes running along its sides, the polarization
response is anisotropic. In addition, changing the parallele-
piped dimensions allows changing the amplitude and phase of
the radiation that is scattered on it. Due to these two factors, a
DNN can be implemented that is capable of performing
various tasks depending on the polarization of incident
radiation; in other words, it is possible to implement a DNN
with polarization-driven multiplexing of radiation. In partic-
ular, the authors demonstrated a DNN capable of simulta-
neously classifying images fromMNIST and FashionMNIST
data. For this, images of each data set enter the DNN input
with their own polarization, and then, depending on the image
class, the radiation is focused onto an area corresponding to a
given class. For example, when the number 1 is at the input, the
radiation is focused in the upper-left corner of the camera, and
when the number is 3, in the lower-right corner. Depending on
the data set and the class, radiation should be focused onto
different places in the matrix. Another innovation in [47] is the
integration of a DNN with a detection system. For this, the
metasurface was manufactured directly above the camera
surface, at a distance of 100 mm, which facilitates scaling up
the production of such DNNs.

3.2 Optical Fourier transform
It is known [37] that, in the paraxial approximation, a thin
lens introduces a phase delay given by t � exp �ÿi�k=2f ��
�x 2 � y 2��, where k is the wave vector of radiation, f is the
focus of the lens, and x and y are coordinates relative to the
axis of the lens. If a certain field distribution U�x; y� is
incident on the lens, then the field distribution U�x; y� � t is
observed after the lens, and the field distribution in the focal
plane of the lens can be found using formula (1):

U 0�x 0; y 0� � z

il

� �
P

U�x; y� exp
�
ÿi k�x

2 � y 2�
2f

�
� exp �ikr�

r 2
dx dy :

In the paraxial approximation, the condition z4 x; y is
satisfied, and r can be expanded in a Taylor series,

r �
������������������������������������������������������
z 2 � �xÿ x 0�2 � �yÿ y 0�2

q
� z

�
1� �xÿ x 0�2

2z 2
� �yÿ y 0�2

2z 2

�
:

Then, the field distribution in the focal plane of the lens
(z � f ) can be found as

U 0�x 0; y 0� � exp �ikf �
ilf

� �
P

U�x; y� exp
�
ÿ ik�x 2 � y 2�

2f

�
� exp

�
ik
ÿ�xÿ x 0�2 � �yÿ y 0�2�

2f

�
dx dy

� exp �ikf � exp �ik�x 0 2 � y 0 2�=�2f ��
il f

�
� �

P

U�x; y� exp
�
ik�xx 0 � yy 0�

f

�
dx dy :
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Thus, U 0�x 0; y 0� is proportional to the Fourier transform of
the field distribution incident on the lens.

Using lenses, a Fourier diffraction neural network
(FDNN) can be constructed [48]. The operating principle of
such a network is as follows. The input field distribution is
incident on the lens that forms the Fourier image of this field
distribution in its focal plane. Next, an optical element that
modulates the radiationÐa spatial light modulator or an
array of digital micromirror devicesÐ is placed there. Such
modulation is equivalent to multiplying the Fourier trans-
form of the input signal by some complex matrix. The
modulating element is at the focus of a second lens, which
produces the inverse Fourier transform of the modulated
radiation. As is known, the Fourier transform of the product
of two quantities (in this case, of the input radiation and the
modulating element matrix) corresponds to the convolution
operation. This makes the operating principle of FDNNs
similar to that of convolutional neural networks. An array of
micromirrors with a resolution of 1920� 1080 pixels,
updated at a frequency of 20 kHz, was used as a modulating
element in [48]. To achieve a high FDNNoperation speed, the
input was not a single image from the data set but 16 images
combined into a 4� 4matrix, with each image having a size of
208� 208 pixels, making the final composite image 832� 832
pixels in size. Thanks to this combination, all 16 images can
undergo convolution simultaneously. The operation speed is
limited only by the pixel update rate of the micromirror array
(20 kHz) and the signal reading frequency of the camera
(1 kHz). The authors demonstrated the functionality of the
FDNN concept using the example of a single-layer network
for which 16 convolution kernels were trained; for the
FDNN, therefore, 16 configurations of the micromirror
array were specified and were applied sequentially. The
FDNN was followed by a single-layer fully connected digital
neural network with a nonlinear activation function. After
training, the FDNN demonstrated a classification accuracy
of 98% forMNIST and 63% for CIFAR-10 [49]. The authors
showed that their FDNN model is capable of calculating the
convolution operation of large matrices 10 times faster than
modern graphics accelerators. Computations can be done
even faster using advanced developments in micromirror
arrays.

A continuation of this idea is the implementation of
convolution operations by optical methods and of all other
operations of a neural network by digital methods [50]. The
authors propose using an array of microlenses with an
individual amplitude±phase mask placed at the focus of each
microlens. This approach allows simultaneously calculating
the convolution for several kernels. As an example, the
authors tried to replace the first convolutional layer of the
well-known convolutional neural network AlexNet [51] with
an optically implemented layer. The remaining layers of the
neural network were implemented on a computer. It was
found that, when replacing the digital convolutional layer
with an optical one, the classification accuracy for Kaggle's
Cats and Dogs dataset [52] decreases from 96% to 87%. This
is most probably caused by the lack of a nonlinear activation
function for the optical convolution layer and the small size of
the training data set. With the more famous MNIST dataset,
the accuracy of a neural network with an optical convolu-
tional layer differs from the accuracy of a fully digital neural
network by less than 0.5%. The main motivation for
replacing the digital convolutional layer with an optical one
is to speed up the neural network. The time Tlatency of

performing the convolution operation with an optical circuit
is a sum, Tlatency � Tsource � Tprop � Tdetect � Tdata, where
Tsource is the time required to generate the input image, Tprop

is the time it takes the light to pass through the optical circuit,
Tdetect is the time required to detect a signal, and Tdata is the
time required to transmit the detected signal to the software
that implements the rest of the neural network. The time
Tsource is determined by the speed of the image generation
system and was 1 ms (a 1-kHz update rate) in the study under
discussion. The time Tprop is a few picoseconds and can be
ignored. The time Tdetect is determined by the speed of the
detecting element and is about 1 ms for a CCD camera. The
time Tdata is determined by the time of signal transmission
from the detecting element to the computer. For a USB 3.0
connection with a bandwidth of 2500 Mbpsÿ1 and a 100 KB
image, Tdata is 0.32 ms. Thus, the total time to calculate the
result of the convolution operation is 2.32 ms. It is important
to note that this time is not sensitive to changes in the image
resolution. As a result, a graph (Fig. 13) can be obtained
where the operation speed of convolutional layers implemen-
ted entirely digitally is compared with that using optical tools.
The result produced by a single convolution layer implemen-
ted using an optical circuit is calculated faster than with a
graphics accelerator when the image is larger than 500� 500
pixels in size.

The authors also evaluated the power consumption of an
optically implemented convolution layer and a convolution
layer placed on a graphics accelerator. In the optical
implementation, power consumption is independent of the
size of the convolution kernel, while the power consumption
of the convolution layer on a graphics accelerator increases in
proportion to the number of pixels. We can conclude that the
optical implementation of even one convolution layer is called
for only when working with high-resolution images and when
using high-dimensional convolution kernels.

Amajor obstruction to using DNNs is the lack of a simple
way to implement an optical nonlinear activation function. In
[53], a thin plate of photorefractive material SBN:60 installed
at the end of a multilayer FDNN was proposed for this
purpose (Fig. 14). The main motivation for the use of the
SBN:60material is its large nonlinear response. The refractive
index of that material depends on the intensity of the incident
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radiation as

n � kEapp
hIi

1� hIi ;

where n is the change in the refractive index; k is a constant
determined by the refractive index of thematerial, the electro-
optical coefficient, and the intensity hI0i of uniform illumina-
tion of thematerial;Eapp is the applied static electric field; and
hIi is the intensity perturbation relative to uniform illumina-
tion hI0i. It was shown that changing n allows changing the
phase of transmitted radiation from 0 to p for a plate 1 mm in
thickness with a static voltage of 972 V applied to it and an
incident radiation intensity of 0.1 mW mmÿ2. The introduc-
tion of a nonlinear layer allowed the authors to implement an
FDNN capable of solving problems of segmentation and
detection of objects in images (Fig. 14). Such an FDNN can
operate in real time and detect objects directly on video.

4. Conclusions

We have examined advanced approaches to implementing
analogue photonic computing and photonic intelligent
systems.

The first group of approaches is based on the use of
elements of integrated photonics to implement vector±matrix
operations, which allows introducing photonic neural net-
works into traditional computing systems as a coprocessor to
speed up calculations and increase energy efficiency. This
approach has already been put into practical use and has a
significant energy efficiency advantage, up to 20 fJ per
operation, which is two orders of magnitude higher than the
current energy efficiency of standard central processors. We
have also discussed the challenges associated with this
approach: its efficiency, the maximum frequency of optoelec-
tronic conversions, and the bit depth of numbers used in
computation.

The second group of approaches is based on optical
calculations in free space, which allows performing mathe-

matical operations in one computation cycle with the entire
data array by using the physical properties of optical
radiation. These approaches have not yet found their
practical application in computing, partly due to the com-
plexity of their integration with current computing algo-
rithms, but they certainly deserve attention and have
significant potential for working with large data sets.

The advantages of photonic computers over electronic
ones include a two-orders-of-magnitude gain in energy
efficiency due to the possibility of parallel operation at
several wavelengths at once, using physically the same array,
with the same number of weight elements in the photonic and
electronic crossbar arrays, increased throughput thanks to
signal modulation at a much higher frequency, and reduced
requirements for heat removal from the photonic chip. The
advantage of electronic components over optical ones is their
compactness, i.e., the potential to place more elements and
compensate for the difference in performance. However, the
problem of resistance drift remains open, which reduces the
accuracy of hardware accelerator computations.

Optical computing for certain tasks opens up the prospect
of not only increasing energy efficiency but also accelerating
operation by the use of low-bit high-speed DAC±ADCs at
low power consumption and reducing the number of electro-
optical conversions when working with optical convolutional
neural networks or with signals that are initially represented
in the optical domain.

This research was carried out in the framework of the
scientific program of the National Center for Physics and
Mathematics (project National Center for Studying Super-
computer Architectures) and with the support of the Intellect
Nonprofit Foundation for the Development of Science and
Education.
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