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Abstract: Optimal design of a silicon nitride waveguide structure composed of resonant nanoantennas
for efficient light coupling with interlayer exciton emitters in a MoSe2–WSe2 heterostructure is
proposed. Numerical simulations demonstrate up to eight times coupling efficiency improvement
and twelve times Purcell effect enhancement in comparison with a conventional strip waveguide.
Achieved results can be beneficial for development of on-chip non-classical light sources.
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1. Introduction

Two-dimensional (2D) materials, ranging from semimetallic graphene to insulating
hexagonal boron nitride, have attracted significant interest from the scientific community
recently [1–3]. In comparison with conventional bulk materials, these atomically thin layers
exhibit exceptional optical properties such as enhanced nonlinear optical response and
ultrafast photo-induced relaxation [4–6]. Transition metal dichalcogenide (TMD) materials,
which can be represented as MX2 (M = Mo, W; X = S, Se), are well-renowned in this research
field for their electronic and optical properties [7–12]. Contrary to gapless graphene,
these materials undergo a change from indirect to direct bandgap semiconductors being
thinned down to a monolayer level, which corresponds to the quantum confinement
effect. They also possess large exciton binding energies defining their remarkable optical
properties. The bandgap energy in TMD thin films is spanned across the visible and the near-
infrared spectral ranges making them attractive for variety of photonic and optoelectronic
devices [13].

Owing to their fascinating properties, 2D TMD materials can be used for many prac-
tical applications such as optical modulators, classical and non-classical light sources,
light-harvesting devices, photodetectors [14–20]. Due to their intrinsic thickness light
extraction efficiency from TMD films can significantly outperform other solid-state emit-
ters [21,22]. It makes them especially interesting in terms of integration with different
photonic structures and resonant cavities [23]. Moreover, TMD materials can provide a
versatile platform for spin–photon interfaces in the field of quantum networking [24].

Monolayers of different TMD materials also can be vertically stacked to form het-
erostructures with new peculiar properties, which are not observed in single layers of
constituent materials [25]. One of the emerging effects is the formation of interlayer ex-
citons corresponding to spatially separated electron–hole pairs [26]. They are known for
their long lifetimes [27] and associated dipole moment orientation in the out-of-plane
direction, which both can be beneficial for the creation of deterministic quantum emit-
ters [28]. Together with the intrinsic long lifetime, valley degree of freedom and tunability
make interlayer excitons a promising candidate for a broad range of quantum photonic
applications [29].
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In order to fully utilize their functionality for existing devices, TMD layers can be opti-
cally coupled with photonic structures on a chip [30]. It opens a way for different practical
devices such as sensors, radiofrequency systems and optoelectronic circuits [31]. Another
important application for hybrid integrated photonic structures can be found in the field of
quantum optics [32]. Integration of single photon emitters in a TMD monolayer with the
guided mode of a silicon nitride waveguide has been also demonstrated recently [33].One
of the main challenges, which significantly decreases light coupling efficiency in such
systems, is the unpredictable orientation of the dipole polarization corresponding to the
localized exciton emitter in the TMD monolayer. Moreover, the evanescent field of the
waveguide mode has a limited ability to channel radiated power even for the fixed dipole
orientation estimated below 10% for the presented case [33]. Employment of resonant
nanoantennas for emitters in 2D layered materials can bring about both improved optical
coupling and Purcell effect enhancement [34–36].

Resonant integrated photonics based on Mie-type nanoparticles has recently been
introduced as a versatile tool to control light on a chip [37,38]. It can provide compactness
and new functionalities not shown previously in conventional components. By tailoring
the resonant response of nanoparticles, it is possible not only to guide radiation through
them [39,40], but also to improve light coupling from the external source to a chip [41].
Resonant nanophotonic cavities for lasing and all-optical modulation also have been
demonstrated previously [42,43]. However, the major part of these works deals with
electric-type modes, which cannot be efficiently coupled with out-of-plane dipole sources
on a chip. Through special design of the nanoparticles, one can achieve both high density
of optical states in the cavity and radiation channeling via strong near-field connection.

In this paper, we propose a concept of a resonant waveguide system (RWS) based on
a magnetic type high-Q photonic nanocavity for effective optical coupling with localized
interlayer exciton emitters in vertically stacked monolayer MoSe2–WSe2 heterostructures,
as conceptually illustrated in Figure 1a. The RWS is composed of a silicon nitride (SiN)
strip waveguide, the central part of which is replaced by rectangular nanoparticles forming
specially designed subwavelength Bragg grating. Silicon nitride is chosen as it is a typical
material for integrated silicon photonics and available for large-scale fabrication through
the world-known factories [44]. It has the transparency region in visible and near-infrared
(NIR) spectral ranges, making it suitable for many applications including quantum op-
tics [45]. It is also a good match for the present study contrary to silicon used in the relative
previous work [41] due to the typical emission spectra of TMD films. The proposed RWS
can significantly increase both the spontaneous emission rate (Purcell effect) and optical
coupling of the interlayer exciton emitters in TMD heterostructures with the integrated
waveguide due to the effective mode matching under Mie-type magnetic dipole excitation
in the constituent nanoparticles.

Figure 1. Cont.
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Figure 1. (a) Schematic illustration of the optical coupling between the resonant waveguide structure
and the localized interlayer exciton source in vertically stacked monolayer TMD films. (b) RWS
transmission spectrum obtained for the fundamental TM mode source placed in the strip waveguide
section. The inset demonstrates near-field distribution of the TM mode in the waveguide cross-section
at resonant wavelength λres = 918 nm. (c) Top−view of the electrical near-field distribution in the
middle cross-section of the RWS at the resonant wavelength of λres = 918 nm.

2. Materials and Methods

The RWS under study is composed of the nanoparticle chain placed between two strip
silicon nitride waveguides with the height of h = 400 nm and the width of w = 850 nm
on a silica substrate (Figure 1a). The whole chain consists of three sections: left and right
subwavelength Bragg-gratings (SBG) formed by 10 equal identical nanoparticles with the
same height and width as the strip waveguide and the length of l = 243 nm and the central
nanocavity formed by 20 nanoparticles with the varying length (Figure 1c). The period of
nanoparticles in the chain equals p = 297 nm and is optimized to obtain a photonic stop
band in the spectral region of the interlayer exciton emission in monolayer MoSe2–WSe2
heterostructures [46]. The total length of the SBG section is Lbg = 2.97 µm.

The central nanocavity section includes twenty particles of varying sizes and has the
total length of Lc = 5.94 µm. The length of nanoparticles in this part follows a parabolic
profile to keep the high-Q factor of the resonator [47]. It changes from 243 nm on the edges
to 205 nm in the center of the cavity. As a result, an optimal Gaussian-shaped field attenua-
tion profile is achieved and the nanocavity resonance peak coincides with the emission line
of the interlayer exciton emission in monolayer MoSe2–WSe2 heterostructures [46]. The
above-listed parameters are obtained through the following procedure. At the first step,
we optimize the strip waveguide size for the first TM-mode propagation in the desired
spectral range and then calculate its effective refractive index for the target wavelength
corresponding to the interlayer exciton transition line. At the second step, we use this
waveguide effective refractive index to find a subwavelength Bragg-grating period suitable
to support photonic stop-band in the desired spectral range. Then, for geometrical parame-
ters of nanoparticles in the central part of the cavity, we employ a parabolic modulation
profile to achieve a defect state with a high quality factor in the photonic stop-band as it is
highlighted above (see [48]). Finally, the RWS parameters are tuned to match the interlayer
exciton transition spectral position for the chosen TMD heterostructure.

The aspect ratio (height/width) of the nanoparticles is chosen in analogy with Ref. [40]
to support magnetic Mie-type dipole resonance excitation in the spectral vicinity of the
interlayer exciton emission in monolayer MoSe2–WSe2 heterostructures [46]. The finite dif-
ference time domain (FDTD) method realized in the commercial software Ansys Lumerical
FDTD is used to calculate a transmission spectrum of the RWS (Figure 1b). For this purpose,
we use a fundamental TM mode source placed in the left strip waveguide section and a
power monitor located in the right waveguide section after the nanoparticles chain. SiN
refractive index dispersion for simulations is obtained by the ellipsometry measurements of
the thin films (with the height of 350 nm) grown by the PECVD method with the consequent
annealing. The input TM mode profile in the strip waveguide cross-section is shown in
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the inset of Figure 1b. The transmission spectrum reveals the cavity resonance peak at the
λres = 918 nm with the quality factor Q ∼ 103 similar to previous works [39].

Figure 1c shows electrical near-field distribution in the middle cross-section of the
RWS at the resonant wavelength. The field is strongly confined in the center of the cavity
and provides a higher density of states at a fixed resonant wavelength corresponding to
inter-layer exciton transition in the TMD heterostructure. It is worth mentioning that,
contrary to previous works ([39]), we deliberately optimize our structure for TM mode
configuration with a dominant Ey electric field component corresponding to the out-of-
plane orientation of interlayer excitons in the TMD heterostructure. This provides better
optical coupling between associated with it emitters and the RWS. It is worth mentioning
that the designed structure can be fabricated by standard techniques such as electron-beam
lithography and reactive ion etching. The TMD heterostructure can be further transferred
to the fabricated structure using the mechanical exfoliation method.

3. Results

In order to analyze the emission enhancement and radiation coupling efficiency as-
sociated with interlayer localized excitons in stacked MoSe2–WSe2 monolayers combined
with designed RWS, we provide a series of numerical simulations with varying positions
of the dipole emitter in the heterostructure.

3.1. Analyzing Value of the Parcel Effect Depending on the Position of the Dipole Emitter in the
TMD Film

First, we trace the dependence of the Purcell effect and optical coupling efficiency on
the position of the dipole emitter along the RWS. For Purcell effect enhancement definition,
we introduce a factor Ae f f = P/P0, where P is radiated dipole power in the presence of
the RWS and P0 is the power that the same dipole would radiate in vacuum since the
emission rate is proportional to the local density of optical states (LDOS), and the LDOS
is proportional to the power emitted by the source. Figure 2a shows the dependence of
enhancement factor Ae f f on the emission wavelength for various dipole locations within the
structure depicted by different colors in the inset (single step equals to 1.8 µm). Maximum
value of Ae f f = 16 corresponds to the case when the out-of-plane electric dipole is localized
above the central part of the RWS (central part of the nanocavity). It coincides with
the electric field hotspot providing the maximum density of optical states. The inset
in Figure 2a demonstrates dipole power transmission in one particular direction of the
RWS. One can note that almost 35% of the total emitted radiation is transmitted through
the RWS into the strip SiN waveguide section. It is eight times larger in comparison
with the conventional SiN strip waveguide with the same parameters (width and height),
which emphasizes the superior optical coupling efficiency of the designed RWS. One can
also compare these results with similar examples in the literature. For different material
platforms (hBN and monolayer TMD films on the integrated photonic chips) demonstrated
optical coupling efficiency and Purcell effect enhancement are inferior compared to the
designed RWS [33,49–51].

The Purcell factor as well as optical coupling efficiency decrease with the dipole
shifting along the nanoparticle chain. Ae f f drops four times while transmission drops by
around 10% for dipole movement from the center of the RWS to its edge. At the same time,
both effects still prevail over the conventional strip waveguide case by at least four times.

Figure 2b shows normalized electric field y-component (top) and magnetic field
amplitude (bottom) distributions for xz and zy middle cross-sections through one of
the central RWS nanoparticles when the dipole source is located right above it. This
out−of−plane dipole associated with the localized interlayer exciton in the MoSe2–WSe2
heterostructure initiates magnetic Mie−type resonance in the central SiN nanoparticle, as
can be seen in the right part of Figure 2b. It supports a strong optical connection between the
emitter and the RWS, providing both enhanced Ae f f and radiation transmission through
the waveguide chain.
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Figure 2. (a) Spectra of the Ae f f coefficient for the various dipole emitter location along the RWS as
illustrated by the top scheme. The inset shows transmission results for the same dipole positions.
(b) Normalized electric field y−component (top) and magnetic field amplitude (bottom) distributions
for xz and zy middle cross-sections through the central RWS nanoparticles.

3.2. Transverse Shift of the Emitter in the Subwavelength Waveguide Chain

We also examine the dependence of the Purcell effect and the optical coupling efficiency
on the dipole emitter transverse shift relative to the RWS. Two cases are considered: the
dipole is in the center and on the edge of the RWS (see Figure 3). These are the most possible
positions of localized excitons in transferred 2D films due to the mechanical strain [33,52].

The spectra of the radiation power transmitted along the RWS and the spectra of
the Ae f f coefficient are shown by solid curves in Figure 3 for the case of dipole emitter
located in the center (Figure 3a) and on the edge (Figure 3b) of the RWS. Similar results
for the conventional strip waveguide are shown by dashed curves. In the vicinity of
the RWS resonant wavelength λres, the optical coupling efficiency for both transverse
dipole positions is more than 7 times larger for the RWS relative to the conventional strip
waveguide. Results for the Ae f f coefficient demonstrate up to 12 times the Purcell effect
enhancement in the center of the RWS compared to the conventional strip waveguide, while
for the edge position it drops almost three times due to the local electric field decrease. Still,
it is four times larger for the RWS relative to the conventional strip waveguide, making it a
superior choice for effective 2D emitter integration.

We also perform simulations to estimate the optical coupling efficiency between
intralayer exciton emitters (with in-plane orientation) and the conventional strip waveguide
(configuration similar to the work [33]). Both longitudinal and transverse orientations are
considered. For the first case, the transmission reaches 9.3%, while for the second case it
equals to 8.9%. These results are up to four times smaller in comparison with the RWS
presented above combined with interlayer exciton emitters in the TMD heterosctructure.

It is worth mentioning that the Purcell effect increases the spontaneous emission rate
of excitonic emitters due to a much higher photon density of states in the nanocavity.
Typical lifetimes for interlayer excitons in TMD heterostructures are in the order of a few
tens of ns [53]. Taking into consideration the Purcell factor of 16 (obtained for the best
configuration in the designed RWS), one can expect the interlayer exciton lifetime of a
few ns, which is larger compared to intralayer excitons in single TMD monolayers [54].
Considering this effect in the perspective of single-photon emitters, localized interlayer
excitons can provide a much narrower spectral linewidth, which is beneficial in terms of
photon indistinguishability.

Finally, for the experimental validation of the proposed system, one needs to take
into consideration the variation of the RWS geometrical parameters during the sample
fabrication. To this end, we have estimated the possible resonance shift and broadening
for random geometrical parameter variations typical for electron-beam lithography and
reactive ion etching processes. The results demonstrate that the resonance quality factor is
not significantly affected, while the spectral shift in real devices can be compensated, for
example, by electrical tuning of the TMD heterostructure [53].
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Figure 3. Transmission and Ae f f coefficient spectra for the dipole emitter placed in the center (a) and
on the edge (b) of one of the central RWS nanoparticles. Results for the conventional strip waveguide
are depicted by dashed curves.

4. Conclusions

We propose the optimized resonant waveguide system composed of SiN nanopar-
ticles forming magnetic type high-Q photonic nanocavity for efficient integration with
interlayer exciton emitters in vertically stacked monolayer MoSe2–WSe2 heterostructures.
Obtained numerical results demonstrate up to eight times optical coupling efficiency im-
provement and up to twelve times Purcell effect enhancement in comparison with the
conventional strip waveguide. Our findings open prospects for a variety of applications
such as integrated single-photon emitters based on long-living excitonic states in TMD
heterostructures.
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