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Abstract—Three-dimensional microprinting by two-photon laser lithography is a promising way to
manufacture X-ray lenses. However, as the radius of curvature approaches the voxel size, the refractive
surface of the lens deviates from the specified shape, that leads to a deterioration in the focusing of X-ray
radiation and astigmatism. In this work we suggest a method for correcting a model for 3D printing of a
parabolic X-ray lens taking into account the finite voxel size.
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INTRODUCTION

X-rays have numerous applications in science
and technology due to the possibility of observing
diffraction on crystal lattices, low reflection coefficient
when passing through interfaces, and ionizing pro-
perties [1]. One of the actively developing applications
of this radiation is X-ray microscopy [2–5]. For its
further development, the creation of lenses capable
of focusing X-rays on the microscopic scale with
minimal aberrations is in particular demand.

The refractive index n in medium for X-ray spect-
ral range can be expressed as n = 1− δ + iβ, where
δ is the decrement of the refractive index and β is
the imaginary part of the refractive index responsible
for absorption. The characteristic values of δ range
from 10−5 to 10−7, and β—from 10−6 to 10−8 [6].
Small value of δ leads to a weak optical power of a
single X-ray lens: for example, an aluminium lens
with a 300 μm radius of curvature focuses the X-ray
radiation with an energy of 14 keV at a distance of
54 m [7]. To reduce the focal length, several single
lenses are arranged coaxially to form a compound
X-ray refractive lens (CRL). In thin lens approxima-
tion, the focal length of the CRL is f = R/2Nδ [8],
where R is the radius of curvature of the refractive
surfaces of the lens near the optical axis, and N is
the number of identical single lenses in the CRL. To
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further reduce the focal length f , the radius of curva-
ture R is set to small values ranging from units [9]
to hundreds of micrometers [10]. The optimal re-
fracting surface for focusing synchrotron X-rays is a
Cartesian oval [11]. Near the optical axis, this shape
is approximated to a high degree of accuracy by a
parabola, and in the three-dimensional case, the ideal
refracting surface is close to a paraboloid formed by
the rotation of a parabola around the optical axis. The
optimal configuration of the CRL is therefore an array
of coaxially arranged concave parabolic surfaces with
a radius of curvature of about a few micrometers at
the apex. The focusing of X-ray radiation by an ideal
CRL is shown schematically in Fig. 1a.

Recently the two-photon lithography (TPL) me-
thod has been shown to be well suited for the fab-
rication of CRLs [12]. TPL is a modern method
for printing three-dimensional micro-objects out of
photocurable polymers (photoresists). TPL has been
successfully used to fabricate optical waveguides [13],
microlenses [14], biocompatible microparticles [15],
metamaterials [16] and metasurfaces [17], photonic
crystals [18–20], composite structures [21], and el-
ements of refractive X-ray optics [12, 22]. The TPL
method allows to fabricate optically smooth three-
dimensional microstructures [23] of arbitrary design
with a resolution down to 100 nm [24] and to position
them relative to each other with submicron accu-
racy [25]. Therefore, TPL is suitable for fabrication of
both CRL with a small radius of curvature [22, 26],
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Fig. 1. Schematic representation of (a) ideal and (b) real-
istic CRLs, where the latter is fabricated by two-photon
lithography without finite voxel size correction. The voxel
shape and its trajectories during CRL fabrication in both
vertical and horizontal cross-sections are shown below.

and of other optical elements [27, 28] and complex
optical systems [29].

It has been previously demonstrated [30] that
parabolic lenses fabricated by the TPL method focus
X-ray radiation with astigmatism: the minimum sizes
of the focal spot in the horizontal and vertical cross-
sections are observed at different focal distances.
The astigmatism is caused by the fact that the
lenses produced by the TPL method lack rotational
symmetry relative the optical axis, which in turn can
be explained by the different print resolution along
different directions. The TPL printing process is the
movement of a focused laser beam, which causes
polymerization of the photoresist in the region of
the focal point. The minimal unit of polymerizable
volume, which is named a voxel, is typically shaped
as an ellipsoid of revolution extended along the axis of
laser radiation propagation [31].

The characteristic sizes of the ellipsoid axes are
typically fractions of a micrometer in the transverse
direction and on the order of a micrometer in the
direction of laser radiation propagation [32, 33]. For
example, in [30] the voxel sizes across and along the
axis of laser radiation propagation were estimated to
be 0.6 and 1 μm, respectively. The radius of curvature
of the manufactured lenses was R = 5 μm, which is
comparable to the voxel dimensions. As the absorbed
radiation dose increases, i.e., as the laser power in-
creases or the printing speed decreases, the ratio of
the axial to lateral voxel dimensions increases [34].

Figure 1b shows the focusing of the radiation us-
ing a realistic CRL produced by the TPL method;
the process of the CRL fabrication without correction
for the final voxel size is also schematically shown.
The laser beam travels along the trajectories of a
given three-dimensional model corresponding to the
surface of a paraboloid of revolution. The paraboloid’s
curvature radius R is comparable to the voxel size.
The resulting surface of the fabricated lens is an enve-
lope for a family of elongated ellipsoidal voxels, whose
centers lie on the surface of the paraboloid of revolu-
tion. The elongated voxel shape leads to the difference
in the horizontal and vertical cross-sections of this
envelope when the lens optical axis does not coincide
with the ellipsoidal axis of symmetry, as it is shown
in Fig. 1b. The asymmetry of the manufactured
lens results in astigmatism. However, if the lens is
printed in a vertical geometry, i.e., when the laser light
propagation direction, and thus the voxel symmetry
axis, is aligned with the optical axis of the lens, its re-
fractive surface remains symmetric and astigmatism
is absent [22]. The vertical geometry in TPL process
is preferable for fabrication astigmatism-free lenses,
but using this configuration it is technically difficult
to make CRLs from a large number of lenses due
to the high aspect ratio. In addition, in the case of
vertically oriented CRL, X-rays have to pass through
the substrate and are therefore partially absorbed. In
addition, even though a CRL produced by TPL in ver-
tical geometry has cylindrical symmetry, the refractive
surface of the lens (the envelope for the family of voxel
surfaces with moving center) still deviates from the
parabolic shape, causing aberrations.

In this paper we solve the problem of correcting
a parabolic lens model for its printing by two-photon
lithography taking into account the finite voxel size.

1. ANALYTICAL EXPRESSION
FOR THE CORRECTED CRL MODEL

1.1. Two-Dimensional Case

The geometry of the problem in the two-dimensi-
onal case is shown in Fig. 2a.

Let us write the equation of the target parabola in
the following form:

z2 = 2Rx, (1)

where R is the parabola’s radius of curvature at the
origin of the coordinates.

We can use the ellipse equation for the voxel sur-
face:

(x− xc)
2

a2
+

(z − zc)
2

b2
= 1, (2)

where a, b are semi-axes, and we assume that a/b <
1, (xc, zc) are coordinates of the ellipse center. As the
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Fig. 2. Analytical approach. (a) The geometry of the
problem. (b) Solution for the experimental parameters.
The target parabola is shown as a continuous curve, the
voxel trajectory—as a dashed curve.

voxel center moves along the desired trajectory, the
boundary curve of the area covered by voxels should
form the target parabola. To do this, each voxel
should touch the parabola at each voxel position,
i.e., moving voxel must have a common point and a
common tangent with the parabola for the whole set
of values (xc, zc). By equating the derivatives dz/dx
for the equation of the parabola (1) and the equation
of the ellipse (2), after transformations we can express
voxel center coordinate xc through the tangent point
coordinate xt:

xc (xt) = xt −
a2

√
a2 + 2b2xt/R

. (3)

Using the ellipse equation (2) and setting x = xt,
z = ±

√
2Rxt, for the second coordinate of the voxel

center we have the following expression:

zc (xt) = ±√
xt

[
√
2R+

2b2
√

2Ra2 + (2b)2xt

]

. (4)

Expressions (3) and (4) parametrically define the
trajectory of the ellipse center, and the boundary of
the area covered by the moving ellipse is the target
parabola. The dashed curve in Fig. 2b shows the
solution for parameters a = 0.375 μm, b = 1.075 μm,
and R = 5 μm, while the continuous red curve des-
ignates the target parabola. The selected values of
the elliptical voxel semi-axes a and b correspond to
the characteristic values in TPL printing; the R value
corresponds to the previously produced CRLs with
astigmatism [30]. Due to the elongated shape of the
voxel, the distance between its center trajectory and
the target parabola is minimal near the top of the
parabola and increases with distance from the optical
axis.

1.2. Thee-Dimensional Case

For the practical case of the correction problem,
the three-dimensional case is relevant, in which the
equation for the desired shape of the lens in the form
of a paraboloid of revolution has the following form:

2Rx = y2 + z2. (5)

The equation of an ellipsoid of revolution can be used
to describe the voxel shape:

(x− xc)
2

a2
+

(y − yc)
2

a2
+

(z − zc)
2

b2
= 1. (6)

Qualitatively, the problem is similar with the two-
dimensional case: when an elliptic voxel moves along
the desired surface, the boundary surface of the vol-
ume swept by the voxel must be a paraboloid of rev-
olution. To satisfy this condition, the voxel should
touch the paraboloid at its each point and have a
common tangent plane with it. Equating the tangent
planes for the paraboloid and the ellipsoid at the tan-
gent point T(xt, yt, zt), after transformations we have
the following expressions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2Rxt = y2t + z2t ,

(xt − xc)
2

a2
+

(yt − yc)
2

a2
+

(zt − zc)
2

b2
= 1,

−R

xt − xc
=

yt
yt − yc

=
zt

(zt − zc)a2/b2
.

(7)

From that we can obtain parametric equations
for the voxel center coordinate as a function of the
tangent point (xt, yt, zt):⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xc = xt −
aR

√

R2 + y2t +
b2

a2
z2t

,

yc = yt

⎛

⎜
⎜
⎝1 +

a
√

R2 + y2t +
b2

a2
z2t

⎞

⎟
⎟
⎠ ,

zc = zt

⎛

⎜⎜
⎝1 +

b2

a2
a

√

R2 + y2t +
b2

a2
z2t

⎞

⎟⎟
⎠ .

(8)

Expressions (8) were used to construct a corrected
three-dimensional model of the parabolic X-ray lens
shown in Fig. 3, for voxel parameters a = 0.375 μm
and b = 1.075 μm.

We have used the following geometric parameters
of the lens, which are comparable to the size of lenses
used in synchrotron experiments [30]: entrance aper-
ture A = 28 μm, radius of curvature at the apex of the
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Fig. 3. Schematic of a parabolic X-ray lens with finite
voxel size correction.

(a) N = 101

0 mm

2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

30 mm 60 mm 90 mm 120 mm 155 mm
(b) Without correction

(c) With correction
1 �m

1 �m

10 �m

10 �m

Fig. 4. Numerical simulations. (a) The geometry of
the optical system. The vertical color lines indicate the
distances at which the cross sections of the optical beam
were registered. (b) Cross-sections of the optical beam
passing through the CRL without correction for voxel
size. (c) Cross-sections of the optical beam passing
through the CRL with correction.

parabolas R = 5 μm, lens rim size c = 2 μm, distance
between the apexes of parabolic refractive surfaces
d = 1 μm, length T = 40.2 μm.

2. NUMERICAL SIMULATION OF X-RAY
FOCUSING USING CRLs

WITH AND WITHOUT CORRECTION

To perform the numerical simulation of the X-ray
focusing by the CRL, we have used the ray tracing
method in the Comsol Multiphysics software pack-
age. A cylindrical grid with 15 radial and 60 an-
gular positions was used to simulate the beam of
synchrotron radiation falling on the CRL, and a total
of 900 beams were included in the simulations. The
beam diameter corresponded to the diameter of the
entrance aperture of the lens.

Figure 4a shows a schematic of the numerical
experiment: a source emits a beam of monochromatic
X-ray radiation in a vacuum with a wavelength of 1 Å,
which passes through a CRL consisting of 10 coaxial
parabolic lenses, with a distance of 100 μm between
the centers of neighboring lenses.

The following values of optical constants were
used: δ = 1.614 × 10−6, β = 1.917 × 10−8, which
correspond to parameters for commercially available
polymer SZ2080 [35] commonly used in the manu-
facture of TPL structures. Two variants of the CRL
were used in modeling: the first CRL consists of indi-
vidual lenses without correction and the second uses
lenses with voxel correction. In the first case, a three-
dimensional mesh corresponding to the envelope sur-
face for a family of elongated ellipsoidal voxels whose
centers are located on the surface of a paraboloid
of rotation was computed numerically in the Python
software to create a lens without correction. The
obtained values were processed using MeshLab and
Autodesk 3DsMax software, resulting in the simula-
tion of a three-dimensional microlens of a non-ideal
shape in stl format, imitating lens fabrication by the
TPL method without regard to the finite voxel size. In
the second version, the CRL consists of lenses with
ideal parabolic refractive surfaces corresponding to
TPL lens fabrication with finite voxel size compensa-
tion.

Figure 4b shows X-ray beam cross sections per-
pendicular to the direction of radiation propagation
when passing through the CRL without correction.
At the entrance to the CRL (0 mm), the X-rays fill a
circle with a diameter of 28 μm. After the CRL, the
transverse dimensions of the beam decrease, but this
occurs in a non-uniform manner. At a distance ofL =
120 mm (blue circles) the cross section is flattened in
the vertical direction. At the calculated focal distance
L = 155 mm (purple circles), the focal spot changes
shape, extending along the vertical direction. The
enlarged cross section of the X-ray beam at distance
L = 155 mm is shown in the circular inset on the
right (Fig. 4b). Since the uncorrected lens surface
has no rotational symmetry with respect to the optical
axis, it refracts light unequally in the vertical and
horizontal directions. This results in astigmatism
and pronounced asymmetry of the focal spot. In the
second case of a corrected CRL, the sections of the
X-ray beam have the same circular shape (Fig. 4c),
which does not depend on the distance to the CRL.
At a distance of L = 155 mm (in the circular inset
on the right, Fig. 4c), the focal spot is smaller for the
corrected CRL than for the uncorrected CRL.

This effect is clearly shown in Fig. 5, where the
dependence of the beam size D in the horizontal and
vertical sections on the distance L to the entrance
aperture of the CRL is plotted for CRLs without
correction (green triangles—vertical section, red
squares—horizontal section) and with correction
(blue circles for both sections).

The black curve shows the dependence obtained
analytically for an ideal lens according to the expres-
sion D = A |L/f − 1|. There is astigmatism for un-
corrected CRL: the focal lengths for the vertical and
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Fig. 5. Beam section size D as a function of the distance
to the CRL inlet aperture L. For the model without
correction beam sizes in horizontal and vertical cross-
sections are shown by red squares and green triangles,
respectively. For model with correction blue circles de-
note beam size for both cross-sections. The black curve
shows the analytically obtained dependence for an ideal
CRL.

horizontal sections of the X-ray beam are different.
The meridional and sagittal focal lengths are Fv =
150 mm and Fh = 156 mm, respectively. The differ-
ence in focal lengths ΔF = |Fv − Fh| is 6 mm, which
is similar to the value obtained in previous experi-
mental work [30]. The beam waist size in the verti-
cal cross-section is 970 nm, while in the horizontal
cross-section it equals 460 nm, approximately twice
smaller. In [22], different beam sizes were observed
in the vertical and horizontal sections, with a ratio of
values of approximately 1.5, which can be explained
by different values of key parameters, such as radius
of curvature at the lens apex R and voxel’s semi-axes
ratio a/b.

In the case of CRL with correction, the astigma-
tism disappears: the minimum beam size is observed
at 155 mm from the CRL for both vertical and hor-
izontal beam sections. The focal spot is a circle of
180 nm diameter. The finite size of the focal spot can
be explained by calculation error and the difference of
the refracting surface from the Cartesian oval, but this
value already lies beyond the diffraction limit, which
value has been calculated to be 415 nm for this system
[36].

Although diffraction is not taken into account
in this simulation, the exploited calculation method
shows that, by correcting the lens model for voxel
size, astigmatism can be avoided and a smaller
symmetrical focal spot can be achieved.

CONCLUSIONS

To conclude, in this work we have presented an
analytical expression for the correction of an X-ray
lens model with a parabolic profile that takes into
account the finite voxel size when printed by two-
photon laser lithography. The proposed method based
on the finite voxel size compensation avoids the astig-
matism of X-ray lenses manufactured by two-photon
lithography. In addition, the size of the beam waist
in the vertical section is reduced from 970 to 180 nm,
and in the horizontal section—from 460 to 180 nm.
The proposed correction will make it possible to de-
velop the application of two-photon laser lithography
for manufacturing refractive synchrotron X-ray opti-
cal elements and to increase the resolution in X-ray
microscopy.
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