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Light-stimulated adaptive artificial synapse

based on nanocrystalline metal-oxide film

Igor S. Balashov1, Alexander A. Chezhegov1, Artem S. Chizhov2,
Andrey A. Grunin1, Konstantin V. Anokhin3,4 and Andrey A. Fedyanin1*
Artificial synapses utilizing spike signals are essential elements of new generation brain-inspired computers. In this pa-
per, we realize light-stimulated adaptive artificial synapse based on nanocrystalline zinc oxide film. The artificial synapse
photoconductivity shows spike-type signal response, long and short-term memory (LTM and STM), STM-to-LTM trans-
ition  and  paired-pulse  facilitation.  It  is  also  retaining  the  memory  of  previous  exposures  and  demonstrates  spike-fre-
quency adaptation properties. A way to implement neurons with synaptic depression, tonic excitation, and delayed accel-
erating types of response under the influence of repetitive light signals is discussed. The developed artificial synapse is
able to become a key element of neuromorphic chips and neuromorphic sensorics systems.
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 Introduction
Swiftly  emerging  artificial  intelligence  approaches  are
driving  the  search  for  new  architectural  solutions  and
ways  to  realize  computation.  Traditional  digital  von
Neumann architecture  is  significantly  limited  in  pro-
cessing speed  and  energy  efficiency  due  to  the  separa-
tion  of  memory  elements  from  the  central  processing
unit1−4.  This  limitation  is  especially  critical  for  artificial
intelligence  tasks  requiring  continuous  memory  access.
The  human  brain  has  the  best  energy  efficiency  among
existing  intelligent  systems.  The  embodiment  even  of  a
small fraction  of  its  capabilities  in  information  pro-
cessing devices becomes a game-changing technology for
artificial intelligence systems.

The  high  energy  efficiency  of  the  human  brain  is
achieved to a large degree due to the spiking mode of in-
formation transmission  as  well  as  to  the  joint  imple-
mentation of information integration and memory func-
tions  in  the  neuronal  units.  Spike  signals  combine  the
advantages of  digital  computing  stability  and  high  in-
formation  capacity  of  analog  signals.  The  use  of  spike
coding  has  been  successfully  implemented  in  spiking
neural  networks  (SNNs)5,6, which are  very  attractive  be-
cause  of  low  power  consumption  and  successful  large
amounts of data processing7. Prospects of the SNN-based
neuromorphic approach for solving artificial intelligence
problems have been demonstrated for CMOS chips such
as TrueNorth5, Loihi8, and SpiNNaker9. SNNs mimic sig- 
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nal transmission in biological neural networks represent-
ing  information  in  the  form  of  a  spike  sequence  time
series10. However, the existing SNNs are based on a lim-
ited number of properties of biological neurons and their
connections.  The  challenge  remains  to  develop  a  more
biologically  plausible  multilayer  neural  network,  that
provides a significant boost in the speed of neuromorph-
ic computations.

The  usage  of  optical  signals  for  the  transmission  of
synaptic  spikes  between  neurons  has  several  advantages
over electronics-only  solutions.  The  optoelectronic  ap-
proach  reduces  heat  losses  and  is  suitable  for  making  a
large  number  of  network  connections  and  transmitting
spikes  at  higher  rates.  In  addition,  light-stimulated  and
photoconductive materials  were  implemented  in  con-
structing artificial neurons and several neuron-like prop-
erties were demonstrated using these materials. Artificial
synapses  based  on  inorganic  perovskite  quantum  dots
operating with spike signals possess short-term memory
(STM), long-term memory  (LTM),  STM-to-LTM trans-
ition,  and  paired-pulse  facilitation  (PPF)11−13.  Synaptic
behavior  of  hybrid  perovskite  platelets  also  includes
potentiation,  depression14,  and  activity-dependent
plasticity15.

A  wide  variety  of  materials  are  used  for  light-stimu-
lated  artificial  synapses16−19.  For  example,  a  thin-film
transistor-like  synaptic  device  based  on  CsPbBr3 per-
ovskite  quantum  dots  and  amorphous  indium  gallium
zinc oxide was explored for  brain-inspired computing20.
A synaptic transistor-based thin film of indium zinc ox-
ide and hafnium oxide was also demonstrated21. Memory
and  plasticity  properties  have  been  shown  in  the  light-
stimulated organic field-effect transistors22.  Multilayered
semiconductor  structures  are  also  utilized  as  materials
with neuromorphic properties induced by light stimula-
tion23,24.  These  neuromorphic  photoelectric  structures
show the effects of associative memory, “learning-experi-
ence ”  behavior25,26, learning-forgetting-relearning  pro-
cess4, ''AND'' and ''OR'' light logic functions25. The neur-
omorphic  properties  of  photoconductive  structures  are
also used for image and symbol recognition, as shown in
several computer simulations10,27.

Implementation  of  basic  neuromorphic  properties
such as STM and LTM requires a photovoltaic structure
to  have  at  least  two  channels  for  generating  free  charge
carriers with  different  time  constants.  During  light  ex-
posure,  the  conductivity  of  nanocrystalline  metal-oxide
films changes due to the generation of photoexcited elec-

tron-hole  pairs  and  the  adsorption  and  desorption  of
oxygen on the hierarchically ramified surface28. The dif-
ference  in  the  rates  of  photoconductive  processes  in
nanocrystalline metal oxide films makes them good can-
didate materials for neuromorphic synapses.

The  memory  of  previous  stimuli  is  one  of  the  basic
properties of the nervous system. Most neurons triggered
by  continuous  stimulation  initially  respond  with  a  high
spike frequency followed by a firing rate decrease29. This
important  feature  of  neurodynamic  behavior  is  called
spike-frequency  adaptation.  Such  adaptation  function
significantly expands  the  functionality  of  artificial  neur-
ons. A  neuron  with  spike-frequency  adaptation  was  re-
cently  implemented  using,  for  example,  an  electrical
neuromorphic circuit30,31.

In this  work,  we  propose  an  optical  synaptic  connec-
tion based on a nanocrystalline ZnO film. The photocon-
ductivity  of  artificial  ZnO-based  synapse  stimulated  by
the violet light pulses shows basic synaptic and neuronal
properties  including  spike  response,  short-  and  long-
term  memory  and  paired-pulse  facilitation.  In  addition,
this structure displays the effect of memory about previ-
ous  stimulations  and  spike-frequency  adaptation.  The
presynaptic  event  affects  both  the  photosensitivity  and
the dark  photoconductivity  decay  of  the  artificial  syn-
apse. ZnO structures  are  low-cost  and easy to manufac-
ture and provide better photo- and environmental stabil-
ity than, for example, perovskite halide materials,  which
is  very  important  for  long  and  reproducible  neuron
operation.

 Results & discussion
 Photoelectric synapse
The  idea  of  a  photoelectric  synapse,  which  reproduces
properties  of  biological  synaptic  transmission  is  shown
in Fig. 1.  In  the  nervous  system,  spike  of  presynaptic
neuron  leads  to  release  of  neurotransmitter  transferred
through the synaptic cleft  to the membrane of  the post-
synaptic  neuron  where  it  activates  its  receptors  and
causes opening of the ion channels. As a result, the mem-
brane conductivity changes and the excitatory post-syn-
aptic  current  (EPSC)  is  generated32.  Artificial  synapse
structure that embeds neural-like properties is shown in
Fig. 1(a). Transmission of  action potential  is  implemen-
ted optically through radiation of a LED light source that
increases the  conductivity  of  the  semiconductor  nano-
crystalline  ZnO  film.  When  the  light  is  turned  off,  the
conductivity  decreases  over  time.  The  form  of  light-
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induced  change  of  postsynaptic  conductivity  resembles
the shape of biological spikes.

Figure 1(b) shows a  typical  photoresponse  of  a  nano-
crystalline  ZnO film irradiated  with  a  single  light  pulse.
Since the photoconductivity is a relaxation process, it has
rise and decay kinetics resulting in a spike-like signal re-
sponse to a square-shape light pulse. ZnO film is charac-
terized  by  short  rise  time  and  much  longer  decay  time.
The  electrical  conductivity σ of nanocrystalline  zinc  ox-
ide is controlled by potential barriers arising at the grain
boundaries due  to  the  chemisorption  of  oxygen  mo-
lecules  and  exponentially  depends  on  its  height Vsurf,
σ=σ0exp(−eVsurf/kT).

Light  absorption  by  zinc  oxide  leads  to  generation  of
photoexcited charge  carriers  and  an  increase  of  photo-
conductivity  due  to  delocalized  electrons.  At  the  same
time,  photoexcited  electrons  e−(hν)  and holes  h+(hν) in-
teract with  adsorbed  oxygen  species  causing  photoad-
sorption (1) and photodesorption (2)33,34. 

O2(ads) + e−(hv) = O−
2 (ads) , (1)

 

O−
2 (ads) + h+(hv) = O2(ads) , (2)

where O2(ads) is a physically adsorbed oxygen molecule.
As  a  result,  the  height  of  the  potential  barriers  on  the
grains’ surface changes. Thus, the photoconductivity de-
cay  at  short  time  intervals  (<102 s) is  caused  by  the  re-

combination  of  photoexcited  electrons  at  various  types
of intrinsic traps, while at long time intervals (>103 s) it is
controlled  by  the  recovery  of  the  concentration  of
chemisorbed  oxygen  on  the  grain  surface  and  height  of
potential barriers to a “dark” value.

 Characterization of photoconductive ZnO-based
structures
The  synthesized  nanocrystalline  ZnO  has  a  wurtzite
structure  (Fig. 2(a))  with  a  specific  surface  area  of  42±5
m2/g. The  average  size  of  ZnO  nanocrystallites  calcu-
lated  from  the  broadening  of  X-ray  reflections  is  11±1
nm.  A detailed  study of  the  size  and the  microstructure
of  ZnO  crystallites  by  the  HAADF-STEM  method  of  a
similar  sample  was  published  earlier33.  Nanocrystalline
zinc  oxide  has  an  optical  absorption  edge  near  385  nm;
the band gap calculated from the spectrum is 3.18 eV, see
Fig. 2(b). The X-ray photoelectron spectra of the sample
show  a  Zn2p  doublet  with  a  single  charge  state  and  an
O1s  singlet  with  two  charge  states  (Fig. 2(c) and 2(d)).
The single charge state of  zinc is  attributed to its  oxida-
tion  state  2+  (EB=1022.0 eV  for  Zn2p3/2),  while  O1s(I)
relates  to  oxygen  in  the  crystal  lattice  of  zinc  oxide
(EB=530.8  eV)  and O1s(II)  is  attributed  to  chemisorbed
oxygen  molecules  or  belonging  to  hydroxyl  groups  on
the surface of ZnO (EB=532.3 eV).
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Optical  microscopy  images  of  a  device  consisting  of
Al2O3 plate with Pt electrodes, as well as with an applied
ZnO layer are shown in Fig. 3(a) and 3(b). Scanning elec-
tron  microscopy  of  ZnO  film  showed  its  rough  surface
due to the formation of ZnO aggregates of various sizes.
The film thickness estimated with a 70° tilt of the sample
is approximately 50 μm, see Fig. 3(c). The average size of
ZnO aggregates is  in the range from 1 μm to 10 μm, al-
though there are also larger and smaller particles, see Fig.
3(d). High-resolution SEM images show micrometer ag-
gregates with porous structure molded from smaller ag-
gregates  from  50  nm  to  100  nm  in  size,  see Fig. 3(e).
Thus,  photoconductive  ZnO films  exhibit  a  hierarchical
structure which is manifested itself  in the appearance of
primary  aggregates  of  nanocrystalline  ZnO,  and then in
the  formation  of  secondary  aggregates  of  micrometer
scale. The  presence  of  primary  aggregates  is  also  con-
firmed by the estimation of the average particle size from
the specific surface area. Calculated at Sspec=42 m2/g and
ρ=5.61 g/cm3, it leads to an average value of dBET=25 nm
in the spherical approximation.

 Basic neuromorphic properties
Neuron-like response is demonstrated by illumination of

the  sample  with  a  sequence  of  four  pre-synaptic  pulses
with  central  wavelength  of  405  nm,  average  intensity  of
3.2  mW/cm2,  duration  of  25  seconds  and  a  50%  duty
cycle  (see Fig. 4(a)).  When  the  LED  is  turned  on,  the
structure shows an increase of conductivity. This leads to
a  rapid  increase  in  EPSC  corresponding  to  activity-de-
pendent synaptic plasticity. When the LED is turned off,
a gradually relaxing memory effect is observed. This pro-
cess is  the  same  as  the  EPSC  decay  in  biological  proto-
types.  As  a  result  of  electron-hole  pairs  recombination
the conductivity decays to its initial value.

Light and  dark  photoconductivity  switching  in  nano-
crystalline ZnO is studied by applying two hours of light
illumination  (gray  dashed  line  in Fig. 5(a)).  Light-in-
duced photoconductivity increases nonlinearly in time.

Figure 4(b) illustrates  the  decay  of  photoconductivity
after 1200-second light illumination. The decay curve in-
dicates free charge carriers decrease in time and is char-
acterized by  more  than 8  hours  of  total  relaxation time.
The photoconductivity decrease arises due to two effects:
oxygen  molecules  adsorption  and  recombination  of
nonequilibrium  charge  carriers  inside  crystals  and  on
their surface. In dark conditions, the process of equilibri-
um  surface  oxygen  concentration  recovery  occurs
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resulting  in  the  decrease  of  semiconductors  free  charge
carrier’s concentration  and  electrical  conductivity  ac-
cording to Eq. (1). The decay rates differ significantly for
both effects. Initially, there is a rapid drop of conductiv-
ity due  to  the  reverse  internal  photoelectric  effect.  Oxy-
gen  chemisorption  at  room  temperature  proceeds  more
slowly, which is due to the limited number of adsorption
sites on the ZnO surface and an increase in the adsorp-
tion activation energy as free sites are filled. Taking into
account the existence of two relaxation mechanisms, the
photoconductivity  decay  is  approximated  as  the  sum  of
two decreasing exponentials: 

σ (t) = A0 + A1exp
(
− t
τ1

)
+ A2exp

(
− t
τ2

)
, (3)

where adjustable parameters τ1 and τ2 have the meaning
of the average charge carrier’s lifetimes. The values of τ1
= 408 s and τ2 = 5270 s are chosen to fit a relaxation after
1200 seconds exposure.

The shape of conductivity relaxation line corresponds
to the characteristics of biological synapse plasticity. De-
pending on the parameters of activation, synaptic plasti-
city  is  manifested  at  the  short-term  or  long-term  time
scales35. STM reflects the aftereffects of presynaptic activ-
ity in the time range from milliseconds to minutes. LTM
is  long-term  changes  in  synaptic  strength  lasting  from
tens of minutes to many hours,  sometimes even days or
months. Thus, temporal features of conductivity decay in
nanocrystalline ZnO correspond to the plastic changes in
biological synapses.

Transition of STM to LTM is the main mechanism of
transformation  of  external  stimulus  into  permanently
stored information36−38. The nervous system is character-
ized  by  a  memory  consolidation  phenomenon  when
STM  is  converted  to  LTM39.  An  optoelectronic  synapse
demonstrates STM-to-LTM  transition  at  various  fre-
quencies  of  presynaptic  spikes,  see Fig. 4(c). The  repeti-
tion rate of one-second light pulses was modulated from
0.01 Hz to 0.5 Hz.  The decay rate of  synaptic weights is
frequency dependent, the higher the frequency of expos-
ure  the  longer  the  decay  of  the  synaptic  weight  value.
STM-to-LTM transition  occurs  with  increasing  fre-
quency.  This  behavior  of  the  neuromorphic  structures
repeats the biological learning mechanisms40.

PPF is one of the important properties of synaptic im-
pulse transmission and occurs when a synapse is sequen-
tially  activated  by  two  spikes  with  a  short  interval
between them, and the second response is stronger than

the first one. PPF is a form of short-term plasticity due to
an increased neurotransmitter release in response to the
second  stimulation41.  The  magnitude  of  the  response  to
the  second  spike  depends  on  the  time  between  paired
pulses.  Artificial  synapse  PPF  is  studied  for  10  different
interspike intervals in the range from 1 s to 500 s for 1 s
light pulses. Strong increase in PPF is found for all spike
sequences. Facilitation is characterized by the PPF index,
that is determined as the ratio of the maximum postsyn-
aptic conductance change amplitude B1 as a response to
the first light spike over the amplitude B2 corresponding
to the second spike. PPF index dependence interspike in-
tervals  is  shown  in Fig. 4(d) and  decays  with  increasing
the time between light spikes. The dependence is approx-
imated by the sum of two decreasing exponentials: 

PPFratio = 1+ C1exp
(
−Δt
τ3

)
+ C2exp

(
−Δt
τ4

)
, (4)

where Δt is the time interval between two spikes, τ3 and
τ4 are relaxation  times.  The  best  fit  to  the  data  is  ob-
tained for synaptic plasticity time values of τ3 = 14 s and
τ4 = 135 s. The decay times of PPF relaxation and photo-
conductivity  depend  on  the  received  energy,  however,
the magnitude of the ratio of the fast and slow phases, τ3
/τ4, is maintained.

 Spike-frequency adaptation
Neural  adaptation – time-dependent  modulation  of
neural  responses  following sequential  stimuli – plays  an
important  role  in  the  nervous  system42. Gradual  reduc-
tion  of  excitability  of  a  neuron  in  response  to  repeated
presynaptic action  potentials  is  a  basic  form  of  adapta-
tion mediated through plastic changes in the synapse and
is thought to underlie habituation – the simplest form of
non-associative  learning43. Implementation  of  adapta-
tion properties in an artificial  synapse leads to an emer-
gence of a variety of forms of neuronal activity and plas-
ticity phenomena44,45.

In the experiment of the adaptation of a photoelectric
synapse  two  levels  of  nanocrystalline  conductivity  are
fixed. A  semiconductor  in  the  dark  relaxed  state  is  illu-
minated with continuous LED light until the upper selec-
ted conductivity value is reached. Then the LED source is
turned off  and the conduction value is  recovered due to
the relaxation  processes.  When  the  lower  selected  con-
ductivity  limit  is  reached,  the  LED  radiation  source  is
switched  on  again  and  the  conductivity  increases  to  the
upper  selected  value.  Such  periodical  LED  on/off
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switching  with  conductivity  switching  between  two
cutoff  levels  is  carried  out  100  times.  This  experiment
makes it possible to study excitation and relaxation pho-
toelectric synapse dynamics.

As noted above, the sample has a nonlinear conductiv-
ity  growth  upon  the  light  illumination.  This  is  used  to
choose  adaptation  patterns  of  artificial  synapse.  Four
photoconductivity  modulation  ranges  are  selected  with
the  10  μS  gap:  10  μS – 20  μS  (Range  1),  30  μS – 40  μS
(Range 2), 50 μS – 60 μS (Range 3), 70 μS – 80 μS (Range
4). The duration of relaxation and excitation for each of
the 100 impulses is shown in Fig. 5(b) and 5(c). The syn-
apse is less sensitive to the first pulses of presynaptic illu-
mination.  The  transition  time  between  the  conductance
levels during  light  illumination  decays  for  each  sub-
sequent  pulse.  The  relaxation  time  between  specified
conductivity  levels  also  changes  with  each  successive
pulse. Rapid relaxation to the initial phase is replaced by
the smooth increase in the relaxation time.

The drop  of  the  conductivity  inside  the  Range  4  re-
quires longer presynaptic exposure time, but the change
in  exposure  time  turns  out  to  be  minor  for  all  Ranges.
Thus,  the  duration of  the  spikes  with fixed conductivity
gaps  is  similar  for  various  ranges.  However,  the  decay
time varies  significantly  for  different  ranges.  The  fastest
photoconductivity relaxation is observed for the Range 4,

while the relaxation time for others is significantly larger.
The  duration  of  the  interspike  relaxation  time  with  the
fixed conductivity  cutoff  differs  by  two  orders  of  mag-
nitude for different conductivity ranges.

The adaptability of the artificial synapse frequency re-
sponse  is  controlled by choosing the  conduction cutoffs
levels  (see Fig. 6).  Different  adaptation  patterns  are
achieved by  choosing  the  range,  e.g.,  an  increase  in  fre-
quency (red curve), a stable frequency (green curve) or a
gradual  decrease  in  frequency  for  each  next  spike  (blue
and orange curves).

The change in the duration of relaxation times within
the  measured  ranges  during  pulsed  illumination  can  be
explained by the capture of photoexcited charge carriers
in traps.  Nanocrystalline ZnO contains various acceptor
defects in its energy structure, such as vacancies and in-
terstitial atoms, dangling bonds on the surface, and oth-
ers46,47. The relaxation of photoexcited electrons from the
conduction band  of  the  ZnO  occurs  through  their  cap-
ture on acceptor traps, which form local levels within the
band gap. This, in general, increases the lifetime of pho-
toexcited charge carriers and greatly slows down the de-
cay of photoconductivity.

With pulsed illumination, the first pulses lead only to
partial  filling  of  the  traps  with  photoexcited  electrons,
and  each  subsequent  pulse  leads  to  the  generation  of
electrons  from  a  slightly  different  initial  state  than  the
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previous  one.  Therefore,  the  times  of  illumination  and
decay  of  photoconductivity  undergo  changes  within  the
selected  ranges.  Over  time,  a  steady  state  is  established
between  the  processes  of  generation  and  recombination
of charge  carriers,  which corresponds  to  constant  inter-
vals of illumination and decay of photoconductivity. The
rate at which a steady state reached is proportional to the
illumination time, which allows the trap levels to be filled
faster  with  persistent  illumination.  It  can  be  seen  from
the Fig. 5(a) that  for  the  Range  4,  reaching  the  level  of
70–80  mS  requires  an  initial  exposure  for  a  long  time,
while the Range 1 (10–20 mS) requires much shorter ex-
posure time. Therefore, the time to reach the steady state
for the Range 4 is expectedly less than for the Range 1.

 Steps towards photoelectric neuron with adaptation
The  search  for  biological  analogies  is  one  of  the  most
promising approaches in the development of artificial in-
telligence, considering that properties of the nervous sys-
tem can be emulated using photoelectric synapse. Adapt-
ation empowers the neuron with a function of non-asso-
ciative learning that is able to result in complex patterns
of neuronal  firing.  The  biological  neuron  executes  vari-
ous  spike  modes  demonstrating  tonic,  adapting  and
delayed  accelerating  types  of  excitations48.  These  modes
are realized in the studied photoelectric artificial synapse
and  shown  in Fig. 6.  Adaptive  spikes  whose  frequency
decreases  in  time are  shown by blue and orange curves,
tonic spiking is shown by green dots corresponding to an
almost constant frequency generation and delayed accel-
erating  spike  mode  is  illustrated  by  red  dot  curves.
Switching  between  different  modes  of  excitation  is
achieved  by  choosing  the  cutoff  level.  The  variety  of
spike patterns is not limited to the three displayed cases.
Searching  for  implementations  of  other  spike  patterns,
such  as  burst  mode49,  is  the  subject  of  the  further
research.

Integrate-and-fire  mathematical  models  describe
propagation  of  a  stimulus  in  a  biological  neuron49;  they
encode spikes  as  events  and  depict  the  time  of  occur-
rence of  the neuron’s  action potentials.  Izhikevich50 and
Adaptive Exponential  (AdExp)51 are the examples of  in-
tegrate-and-fire models that take into account properties
of  neuronal  adaptation.  An  AdExp  model  contains  two
differential  equations,  the  first  one  describes  changes  of
membrane  potential,  and  the  second  one  accounts  for
adaptation. A variety of neuronal firing patterns includ-
ing  tonic,  adapting,  delayed  accelerating  and  bursting
spike  sequences  can  be  described  using  such  equations.
These mathematical models are useful for describing the
adaptation properties of photoelectric synapses.

The response  to  a  repetitive  signal  increases  or  de-
creases  depending  on  the  modes  of  synaptic  excitation.
Synapses with  different  adaptation  modes  can  be  com-
bined to obtain a system with a complex synaptic weight
behavior potentially applicable in neuromorphic sensing
as an  anomaly  amplifier  or  discriminator.  The  proper-
ties  of  stimulus-specific  adaptation  are  important  for
processing of various sensory stimuli such as sound, so-
matosensory,  and  visual  signals52−54 and  can  be  used  for
anomaly detection and feature  selection. Figure 7 shows
the  concept  of  using  frequency  adaptation  properties  to
process auditory  signals.  Neurons  are  arranged  accord-
ing to the principle described in the spike-frequency ad-
aptation experiment in Fig. 5.  Continuous signal  from a
presynaptic  neuron  causes  semiconductor  conductivity
changes between the specified cutoff levels. Four types of
differentiated  sound  stimuli  coming  from  presynaptic
neurons are shown in Fig. 7: baby crying, sounds of dia-
logue,  background  music  and  street  noise.  Each  type  of
stimulus  arrives  at  a  separate  synapse  with  individually
tuned  adaptation  properties.  Repetitive  spike  activity
caused  by  background  music  and  street  noise  results  in
an  adaptive  type  of  spike  excitation  and  synaptic
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depression  (gray  curves).  Tonic  excitation  synapse  type
configured to  dialogue  sounds  does  not  reduce  its  re-
sponses. Due to this, the selectivity in the feature dimen-
sion shifts towards the perception of a dialog. Sound of a
persisting baby crying causes delayed accelerating type of
response, triggering  an  increase  in  postsynaptic  poten-
tial.  The  postsynaptic  response  will  shift  the  firing  rate
distribution  towards  the  amplified  feature.  As  a  result,
the specificity of the spiking rate response of a neuron is
determined by  adaptation  mode  adjustment  of  its  syn-
aptic inputs.

 Experimental section

 Synthesis and characterization of nanocrystalline
ZnO films
Nanocrystalline  ZnO  was  synthesized  according  to  the
method  described  earlier55.  Precipitation  of  basic  zinc
carbonate  from  an  aqueous  solution  by  the  reaction  of
Zn(CH3COO)2 with  NH4HCO3 was  used,
Znx(CO3)y(OH)z was  further  decomposed  at  300  °C  in
air. The nanocrystalline  ZnO powder  obtained after  an-
nealing  was  mixed  with  α-terpineol  and  the  resulting
suspension  was  applied  to  the  surface  of  alumina  plate
equipped with Pt electrodes.

Phase  composition  and  crystal  structure  of  ZnO  was
studied  by  powder  X-ray  diffraction  (XRD)  with  a
Rigaku  diffractometer  using  CuKα  radiation  with
wavelength  of λ=1.54059 Å  (1  Å=10−10 m).  The  specific
surface  area  of  nanocrystalline  ZnO  was  determined  by
the low-temperature nitrogen adsorption method. About
of  100  mg  of  ZnO  was  placed  in  a  test  quartz  tube  and
heated at 200 °C in a He flow for 1 h. Then the test tube
with the sample was cooled to room temperature, placed

in a dewar with liquid nitrogen, while a mixture of 10%
N2 in  He  was  passed  through  the  test  tube.  Using  the
Chemisorb 2750 (Micromeritics), the volume of adsorbed
nitrogen  was  measured,  and  when  the  test  tube  was
heated to room temperature, the volume of desorbed ni-
trogen was measured.  Based on the obtained values,  the
surface  area  was  determined  using  the  Brunauer-Em-
mett-Teller (BET) model56 which was related to the mass
of the sample to obtain the specific surface area (m2/g).

Absorption  spectrum  of  nanocrystalline  ZnO  film  in
the wavelength range from 300 nm to 800 nm was recor-
ded using Perkin–Elmer Lambda 35 spectrometer. X-ray
photoelectron  spectroscopy  (XPS)  measurements  were
performed using a K-Alpha (Thermo Scientific) spectro-
meter with an Al Kα X-ray source (Е = 1486.7 eV). The
charge  correction  was  performed  relative  to  the  main
carbon C1s  peak,  the  binding  energy  of  which  was  as-
sumed to be 285 eV. The morphology of the photosensit-
ive  ZnO  layer  was  studied  by  SEM  using  a  Prisma  E
(Thermo  Fisher  Scientific).  Before  the  measurements,  a
thin  Аu  layer  was  sputtered  on  the  sample.  To  evaluate
the  film  thickness,  the  sample  was  tilted  70°  relative  to
the  horizontal.  The  scalability  aspects  of  the  synthesis
methods, the technologization of the fabrication process,
and the variability of synaptic cell  parameters for differ-
ent batches require a separated study.

 Photoelectric synapse measurements
The  conductivity  measurements  of  the  ZnO  film  were
carried  out  with  the  voltage  drop  measurement  circuit
across  a  series-connected  additional  resistance  (high-
precision resistor 12 kΩ 0.05%) with subsequent calcula-
tion  of  the  conductivity.  A  linear  voltage  regulator
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(AMS1117-3.3)  with  an  output  voltage  of  3.3  V  and  an
output  current  of  up  to  80  mA  was  used  as  a  reference
source.  The  voltage  across  the  additional  resistance  was
measured  using  a  16-bits  ADC  converter  (ADS1115).
The sampling time step was 1 ms.

An  LED  with  the  central  wavelength  of  405  nm  was
used  as  an  illumination  source.  It  was  mounted  on  the
same  axis  with  the  structure  at  the  distance  of  20  mm,
the  light  intensity  at  the  film  surface  was  3.2  mW/cm2.
To reduce the influence of variable temperature and hu-
midity  of  the  environment  an  airtight  black  box  was
used.

 Conclusions
A light-stimulated  artificial  synapse  based  on  nanocrys-
talline ZnO film is proposed and implemented. It repro-
duces  basic  properties  of  neuronal  synapses  including
the ability  to transfer  spike signals,  short-term memory,
long-term  memory,  and  paired-pulse  facilitation.  ZnO
film displays a synaptic-like response to presynaptic light
stimulation. The synapse has a non-linear EPSC time de-
pendence.  PPF  index  is  studied  for  different  interspike
intervals in the range between 1 s to 500 s for one second
light  pulses.  An  artificial  synapse  has  two  types  of
memory: STM  lasting  a  few  seconds  and  LTM  main-
tained  for  an  order  of  magnitude  longer.  An  STM-to-
LTM transition is shown at different frequencies of pre-
synaptic stimulations. Conductivity properties of photo-
electric synapse  imitate  the  features  of  presynaptic  ac-
tion  potential  adaptation  in  natural  neurons.  Choosing
the conductivity cutoff level one can control the adaptab-
ility  to  the  frequency  response.  Proposed optoelectronic
synapse has advantages over the previous digital neuron
models with  adaptation  based  on  microelectronic  com-
ponents. The combination of these properties makes the
nanocrystalline ZnO film-based synapse a promising ele-
ment for bioinspired neuromorphic computation.
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