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The natural oscillations of the electromagnetic field in a
particle made from left-handed metamaterial, where both
permittivity and permeability are negative, are considered.
Based on the exact solution of the sourceless Maxwell equa-
tions, it is shown that due to the opposite directions of the
phase and group velocities in the metamaterial, natural oscil-
lations in such particles decay exponentially at infinity, that
is, these natural oscillations can be considered as trapped
modes with a finite energy. The manifestation of such modes
in experiments with Bessel beams is also discussed. © 2023
Optica Publishing Group
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At present, the optical community pays great attention to systems
where the existence of electromagnetic fields strongly localized
in space is possible at frequencies allowing the waves to prop-
agate in a free space. Such states are often called bound states
in the continuum (BIC) [1,2]. In two-dimensional systems and
photonic crystals, a number of such states have been found [3–5].
The situation with localized states of light in three-dimensional
particles is much more complicated. The point is that the usual
quasi-normal modes for three-dimensional particles of a lim-
ited volume grow exponentially at infinity [6] and therefore, in
principle, are not square integrable.

The decaying at infinity solutions of the homogeneous
Maxwell equations in the presence of particles of limited vol-
ume exists, but they are little known since they are based on
non-standard definitions of eigenmodes [7–11]. First of all, there
are ε modes, which are the solutions of the sourceless Maxwell
equations, where the eigenvalue is the permittivity of the parti-
cle [7–9] rather than the frequency (as in ordinary quasi-normal
modes). For finding εmodes, as well as for finding quasi-normal
modes, the Sommerfeld radiation condition [6] is used. Decay
of the ε mode at infinity is related to the complex values of the
eigenvalues of permittivity, corresponding to the active medium
inside the resonator, compensating the radiation losses [9]. It is
very important that ε modes form a complete orthogonal system
of functions and, therefore, are extremely useful for describ-
ing the properties of particles of a given shape made from an
arbitrary material.

Another type of modes decaying at the infinite distance from
three-dimensional particles is represented by recently discovered
perfectly non-radiating or invisibility modes [9–11]. These

modes are solutions of Maxwell’s equations in the presence of
a dielectric particle obtained beyond the restriction imposed by
the Sommerfeld radiation condition. These modes exist for real
eigenfrequencies and therefore fundamentally have no radiation
losses.

Both ε modes and perfect non-radiating modes have several
attractive properties, but the decay of fields at spatial infinity
in these modes (as 1/r) is not fast enough and does not provide
their square integrability.

The possibility of creating spherical resonators with highly
localized modes has been also studied in Refs. [12,13], where
it is proposed to use shells made of epsilon-near-zero (ENZ)
materials to suppress radiation. The resonators considered in
these works should, apparently, be attributed not to open but
to closed resonators, and the boundary conditions arising due
to ENZ layers should be considered as a generalization of the
boundary conditions of a perfect electrical conductor (PEC) or
a perfect magnetic conductor (PMC).

The only non-trivial example of localized states in a three-
dimensional space that have a finite energy (known to the
authors) is the Neumann–Wigner strange modes [14] and their
generalizations [15,16]. These strange modes have a finite
energy despite the fact that this energy is above the barrier.
However, the price for a strong localization of the field is a
non-trivial potential that, oscillating, extends to infinity.

Thus, as far as the authors know, strongly localized 3D
finite-energy modes with a potential localized in space are still
unknown for open resonators. In this Letter, we will show that
highly localized modes in 3D particles of limited volume are
possible if these particles are made of the metamaterial where
both ε and µ are negative (left-handed or double-negative (DNG)
metamaterial) [17,18]. From a practical point of view, it is very
important that the incorporation of gain material in the high-
local-field areas of a metamaterial makes it possible to fabricate
an extremely low-loss and active optical DNG metamaterials
[19]. Such materials may theoretically exist as natural media up
to the THz frequency region [20].

Particles made of the metamaterials with a negative refractive
index have anomalous optical properties [21–23], and, therefore,
it is natural to expect that natural oscillations of light in such
particles will also have unusual properties.

In this Letter, by the example of spherical DNG particles, we
show that in any particles with a negative refractive index, there
are modes with a complex frequency with the fields decaying
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exponentially at spatial infinity, and, therefore, it is natural to
call these modes trapped modes.

The sourceless Maxwell equations in the presence of DNG
particles have the usual form [24]:

∇ × E1 = ik0µH1;∇ × H1 = −ik0εE1, inside particle,
∇ × E2 = ik0H2;∇ × H2 = −ik0E2, outside particle,
n × (E1 − E2) = 0; n × (H1 − H2) = 0, at the boundary,

(1)
where ε and µ are the particle relative permittivity and per-
meability, k0 =ω/c is the wavenumber in vacuum, ω is the
frequency, c is the speed of light, n is the unit normal vec-
tor to the boundary, and E1, E2, H1, and H2 are corresponding
field strengths. Throughout the Letter, it is assumed that the
dependence of fields on time has the form exp(-iωt).

Without any additional conditions, the solutions of Maxwell’s
equations [Eq. (1)] form a continuum of solutions with very
different behavior at infinity. To find localized eigenoscillations,
one usually imposes the Sommerfeld radiation conditions at
infinity [6]:

E2(r, k0) →
exp(ik0r)

r
F(k), (2)

where r is the position vector, r= |r|, F(k) is the scattering
amplitude, and k is the unit vector in the direction of observation.

Spatial structure of the magnetic field of axisymmetric TM
solutions in the presence of a spherical particle with satisfying
the Sommerfeld condition at infinity has the form [25]:

Hϕ = h(1)
n (k0R)jn

(︁
k0r

√
εµ

)︁
P1

n(cos θ), r<R,
Hϕ = jn

(︁
k0
√
εµR

)︁
h(1)

n (k0r)P1
n(cos θ), r>R, (3)

where R is the sphere radius, and it is assumed that the sur-
rounding space is vacuum. In Eq. (3) and further, jn(x), h(1)

n (x)
and P1

n(x) are the spherical Bessel functions and the Legendre
polynomials, correspondingly.

The continuity condition for the tangential components of
the solution [Eq. (3)], that is, the dispersion equation for the
frequency k0, in this case has the form [25]:

ε
d

dz2
[z2h(1)

n (z2)]jn(z1) −
d

dz1
[z1jn(z1)]h(1)

n (z2) = 0,

z1 =
√
εµk0R, z2 = k0R.

(4)

It is very important that the dispersion Eq. (4) is valid for any
values of permittivity and permeability, including DNG particles
with ε < 0 and µ < 0.

Figure 1 shows solutions of the dispersion Eq. (4) for elec-
tromagnetic eigenmodes in DNG particles in the ideal lossless
case [µ= –1, ε ∈ (–60, –1.25)] and in the more realistic lossy
DNG metamaterial case [µ= –1+ 0.1i, ε ∈ (–60, –1.5)+ 0.1i].

It can be seen in Fig. 1 that in the case of DNG particles, there
are roots both with negative imaginary parts of frequencies and
with positive ones. Such behavior is radically different from the
case of a dielectric sphere (see Supplement 1).

Negative values of the frequency imaginary part correspond
to exterior oscillations of the electromagnetic field outside the
DNG sphere, and they rapidly grow at infinity. Completely
analogous quasi-normal mode (QNM) exterior oscillations also
take place in the case of a dielectric sphere. As the refrac-
tive index tends to infinity, the imaginary part of these modes
tends to a finite negative value, determined by the root of the
equation d(zh(1)

n (z))/dz = 0. At n= 1 (dipole mode) this root is

Fig. 1. Dependence of the complex roots of Eq. (4) on the per-
mittivity ε for the ideal lossless case [µ= –1, ε ∈ (–60, –1.25), solid
line] and for the more realistic case of lossy DNG metamaterial
[µ= –1+ 0.1i, ε ∈ (–60, –1.5) + 0.1i, dashed line]. The sphere is in
vacuum. Dipole case, n= 1. Different branches correspond to dif-
ferent radial quantum numbers of the solutions, that is, the number
of zeros of the mode field in the radial direction.

k0R= 0.866–0.5i, and the corresponding oscillations are low-
Q quasi-normal modes and, therefore, such modes are of little
interest.

However, in the case of a DNG sphere, unlike a dielectric
sphere, there are natural oscillations with positive imaginary
parts of frequencies. Such oscillations, in accordance with the
Sommerfeld radiation condition, decay exponentially at infinity.
If the refractive index tends to infinity, the imaginary part of the
complex frequency of these modes tends to zero, i.e., they are
high-quality oscillations which may, therefore, have practical
importance. It is very important that the exponential decay takes
place not only in the case of lossless DNG metamaterial but
also in the more realistic case of DNG metamaterial with losses,
which necessarily exist in accordance with the Kramers–Kronig
relations [26,27]. In the presence of losses, the exponential decay
becomes even stronger (see Fig. 1), and this is quite understand-
able, since the part of the energy associated with Joule losses in
the DNG metamaterial is spent to its heating and not to radia-
tion. Since these modes are strongly localized, they are square
integrable, and therefore it is natural to call them trapped modes.

In the region of high refractive indices, N = √
εµ>>1, asymp-

totic solutions of dispersion Eq. (4) for high-Q trapped modes
have the form (see Supplement 1 for details):

Re(k0,nR) =
Zn

N

(︂
1 −

µ

nN2 + . . .
)︂

, Im(k0,nR) = −µ
Z2n+2

n

N2n+4 ξn,

ξ1 = 1, ξ2 = 1/36, ξ3 = 1/2025, . . . ,
(5)

where Zn is the root of the equation Jn+1/2(Zn) = 0. It clearly
follows from Eq. (5) that when the sign of µ changes, the sign of
the imaginary part of the frequency changes also, which leads
to exponential damping of the trapped modes.
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Fig. 2. The dependence of Re(Hy(r, θ=π/2)) on the radius r for
the quasi-normal TM101 mode in a dielectric sphere (ε = 10, µ= 1,
k0R= 1.35715 – 0.160978i, blue curve) and for the trapped TM101
mode in a DNG sphere (ε = –10, µ= –1, k0R= 1.46872+ 0.126651i,
red curve).

Figure 2 shows the spatial distributions of the magnetic field
for modes in dielectric particles with an ordinary refractive index
and in particles with a negative refractive index. Figure 2 clearly
shows the exponential decay of trapped TM101 (ε = –10, µ= –1)
modes and the exponential growth of quasi-normal modes TM101

(ε = 10, µ= 1) at infinity. In this case, the fields inside the sphere
for dielectric and DNG spheres with refractive indices of the
same modulus practically do not differ.

To clarify the physical reasons for the occurrence of trapped
modes, Fig. 3 shows the streamlines of the Poynting vector, S =
c/8πRe(E × H∗), for the trapped modes and the quasi-normal
modes in the dielectrics.

It can be seen in Fig. 3(a) that due to the negative refraction
at the interface between the DNG particle and the vacuum, the
streamlines are closed, distinguishing fundamentally the case of
the DNG sphere from the case of an ordinary dielectric sphere,
where the streamlines are open [Fig. 3(b)]. Thus, the existence
of trapped modes in DNG particles is associated with the main
property of media with a negative refractive index, that is, with
opposite directions of the phase and group velocities of light.
This mechanism of the origin of trapped non-radiating modes is
fundamentally different from the Friedrich–Wintgen mechanism
[28] and other mechanisms [29] which are usually used for the
phenomenological description of BIC and consist in searching
for conditions of destructive interference of two radiating modes.

In contrast to the diverging quasi-normal modes in dielectric
particles, the trapped modes form a complete orthogonal system
(see Supplement 1):

⎛⎜⎝ε
∫
V−

EsEs′dV +
∫
V+

EsEs′dV⎞⎟⎠ = 0, s ≠ s′, (6)

where V− and V+ stand for volumes of particle and exterior
space, correspondingly.

The trapped modes found for DNG particles are not abstract
solutions of the sourceless Maxwell equations. They manifest
themselves clearly in the scattering of Bessel beams by a DNG
sphere (for general formulas, see Ref. [30]). The symmetry of
Bessel beams is in perfect agreement with the symmetry of any
axisymmetric bodies and therefore is well suited for studying
their non-trivial optical properties. In the case of axisymmetric
TM polarization, the only non-zero magnetic field component

Fig. 3. Streamlines of the Poynting vector (a) for trapped
TM101 mode in DNG sphere (k0R= 1.46872+ 0.126651i, ε = –10,
µ= –1) and (b) for quasi-normal TM101 mode in dielectric sphere
(k0R= 1.35715 – 0.160978i, ε = 10, µ= 1).

of the Bessel beam has the form:

Hϕ = H0J1(k0ρ sin β)eik0z cos β(TM case). (7)

The wave vector components of the Bessel beam [Eq. (7)] form
a cone having a conical angle β relative to the z axis. Here, ρ
and z stand for cylindrical coordinates.

Figure 4 shows the dependence of the scattered power on the
size parameter of the sphere, k0R, in the case of axisymmetric
Bessel beam with TM polarization.

This spectrum shows clearly the presence of the perfect
non-radiating modes (PTM) [9–11] and the trapped modes,
manifesting themselves as the minima and the maxima of the
scattered power, respectively. The shape of the scattering spec-
trum is generally like the spectrum of scattering by a dielectric
sphere, but the modes causing large scattering in this case arise
at the frequencies of the trapped modes.

In conclusion, we have shown that in the DNG particles with
Reε < 0 and Reµ < 0, there are modes that decay exponentially
at infinity. Therefore, these modes can be regarded as trapped
modes with a finite energy. The existence of such modes is
associated with the main property of the media with a negative

https://doi.org/10.6084/m9.figshare.24298045
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Fig. 4. Dependence of the scattered power on the size parameter
of the sphere k0R (axisymmetric Bessel beam, TM polarization,
ε = –36, µ= –1 β=π/4).

refractive index, that is, with opposite directions of the phase and
group velocities of light. This mechanism of origin of trapped
modes is fundamentally different from the Friedrich–Wintgen
mechanism [28], which is usually used for the phenomenological
description of BIC and consists in searching for conditions of
destructive interference of two modes.

We have proved the existence of trapped modes by the example
of a spherical DNG particle and TM polarizations, generaliza-
tion to non-spherical particles, and other field polarizations can
be carried out in complete analogy with the analysis given in
this Letter.

Within Schrödinger quantum mechanics, a similar solution is
hardly possible. Indeed, in the case of quantum mechanics, the
scalar wave function and its normal derivative are continuous at
the boundary of the potential well, while in optics the tangen-
tial components of the electric and magnetic fields should be
continuous. In the case of the spinor Pauli or Dirac equation, it
is possible to realize negative refraction [31,32], and therefore
trapped modes are possible there.

In this work, the properties of trapped modes in the DNG
particles in the monochromatic case were considered. The man-
ifestation of the trapped modes in the non-monochromatic case,
taking into account both temporal and spatial dispersion, can
be very interesting, since in this case non-trivial aspects of
the causality principle and Kramers–Kronig relations [33] can
appear.
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