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Two-dimensional materials are promising candidates for the creation of f lat photonics devices. The main
problem of using such materials for applied applications is the complexity of creating films of specified geo-
metric parameters. The films of two-dimensional materials made by exfoliation or chemical deposition meth-
ods are usually randomly distributed over a large area and have a large thickness spread. In this paper, we use
convolutional neural networks to predict the film thickness of a quasi-two-dimensional material based on
optical microscopy data. Hexagonal boron nitride, which is actively used in the creation of f lat electronic and
optoelectronic devices, was chosen as a test material. Due to the high spatial resolution of microscopy, it is
possible to achieve high accuracy in predicting the thicknesses of f lat areas of the sample, which allows for
rapid characterization of structures. In addition, using the example of the signal of the third optical harmonic,
we show the possibility of predicting the magnitude of the nonlinear optical response of the film, which
expands the scope of the method.
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1. INTRODUCTION
Graphene, transition metal dichalcogenides and

hexagonal boron nitride (hBN) are the most well-
known representatives of two-dimensional materials
that attract a lot of attention due to their unique elec-
tronic and optical properties [1]. Tunable band gap
[2], ultrafast carrier dynamics [3, 4], bright photolu-
minescence [5], optical anisotropy [6] and saturated
absorption [7] inherent in two-dimensional materials
are promising properties for use in applied photonics
and optoelectronics devices. Due to the background of
the active development of graphene electronics
devices [8], hBN is becoming increasingly popular.
While most two-dimensional materials are metals or
semiconductors, hBN is a dielectric with a band gap of
about 6 eV [9], having a smooth uncharged surface,
which allows it to be used as substrates and dielectric
layers of composite two-dimensional devices [10].
One of the main problems in the manufacture of com-
plex multilayer structures based on two-dimensional
materials is the fabrication of films of a given thickness
in the range from units to hundreds of nanometers.
The fabrication of two-dimensional films is most
often carried out either by chemical methods that do
not provide precision control of the thickness and
quality of the film, or by mechanical exfoliation, as a
result of which fragments of films with different num-
bers of layers are randomly scattered over the surface

of the receiving substrate [11]. In the latter case, the
impossibility of manufacturing films of the specified
parameters can be partially compensated by the accu-
rate determination of the thicknesses of the fabricated
samples. The existing methods of atomic force
microscopy, Raman scattering of light and photolumi-
nescent spectroscopy make it possible to accurately
determine the thickness of films, but they are ineffec-
tive when working with large areas, since they require
a lot of time to search and identify a separate structure
[12]. One of the approaches in this situation is the joint
application of optical microscopy and artificial neural
networks (ANN), which have shown significant
advantages in computer vision tasks, such as image
segmentation and object classification [13, 14]. In
recent years, the prospects of using ANN for the anal-
ysis of experimental data and the design of structures
for the required properties of [15–18] have been
shown, as well as the physical implementation of ANN
based on optical structures [19, 20]. A number of arti-
cles have shown the possibility of determining the
thicknesses of thin films of two-dimensional materials
from measured hyperspectral images of a sample using
convolutional neural networks [21, 22]. However, the
measurement of hyperspectral images requires the use
of sophisticated equipment, which often does not
allow achieving high spatial resolution.
502



CONVOLUTIONAL NEURAL NETWORKS 503

Fig. 1. (Color online) Dataset assembly scheme for training a neural network. The top row is optical images of hBN flakes:
(a) original image of hBN flake, (b) map of (white lines) flake boundaries and (dotted lines) calculated guides, and (c) the dataset
element obtained after fragmentation. The bottom row is thickness atomic force microscopy of (d) hBN flake, (e) (white lines) flake
boundaries and (dotted lines) calculated guides, and (f) the mask obtained after fragmentation corresponding to the element (c).
In this paper, using an convolutional neural net-
work of the U-Net architecture [23], the possibility of
predicting the thicknesses of hexagonal boron nitride
films from optical images of the sample is shown,
which not only makes the characterization process fast
and accessible, but also allows achieving high spatial
resolution. An additional advantage of the method is
the possibility of its use for predicting not only mor-
phological, but also optical properties of the sample,
including nonlinear optical ones, which are actively
used for non-invasive characterization of nanostruc-
tures [24]. This approach is shown by the example of a
signal of the third optical harmonic and demonstrates
high prediction accuracy.

2. PREDICTION OF BORON NITRIDE 
FILM THICKNESS

The neural network was trained on optical images
of fragments of thin films (f lakes) of hexagonal boron
nitride made by the standard method of mechanical
exfoliation followed by transfer using polymethyl-
methacrylate (PMMA) to a fused quartz substrate. As
a result of this method, hBN flakes of various thick-
nesses with lateral dimensions of tens of micrometers
are randomly located on the substrate surface. The
images of the samples were obtained using an Olym-
pus BX53 optical microscope in a transmission and
reflection illumination scheme. A color CMOS cam-
era was used as a detector, which allows obtaining
high-resolution RGB images with 8 bits depth. An
example of a f lake image with areas of different thick-
nesses is shown in Fig. 1a. It can be seen that when
JETP LETTERS  Vol. 118  No. 7  2023
using white illumination, parts of the sample having
different thicknesses turn out to be colored in different
colors, which is due to the effect of light interference
in thin films. The f lake thicknesses were determined
using an NT-MDT NTEGRA atomic force micro-
scope operating in semi-contact mode. The character-
istic thickness of the cantilever, which determines the
accuracy of scanning, was approximately 10 nm. The
thickness map of the sample corresponding to the
optical image of f lake is shown in Fig. 1d. The thick-
nesses of all the samples studied were found to lie in
the range from 2 to 180 nm, with the exception of a
small high f lake region, shown in Fig. 1, whose thick-
ness is about 350 nm. This area was excluded from fur-
ther work, since the sample does not have other ele-
ments of such thickness, and therefore this value
should be considered deviant. A histogram of the dis-
tribution of film thicknesses by structures is shown in
Fig. 2. The observed distribution does not correspond
to the normal one, but it covers the studied range quite
fully.

As a dataset for training a neural network, an
option consisting of image-mask pairs was chosen.
Thickness maps were used as masks for ANN training.
To compare pairs of images with each other, the
boundaries of the f lakes were found using the gradient
method, after which the positions and rotation angles
of the guide axes were determined, relative to which
the scaling and rotation of the images were performed
(Fig. 1b). The images of the masks were subjected to
additional smoothing and alignment to compensate
for defects caused by the method of measuring thick-
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Fig. 2. (Color online) Histogram of the thickness distribu-
tion of hBN samples by dataset.
ness maps. Since the set of experimental samples is
limited and amounts to about 80 pieces, an extension
of the dataset is required to train the ANN. For this, a
method of fragmentation using a square grid was cho-
sen, in which the number of dataset elements is
increased by splitting the available images into smaller
parts with the possibility of applying additional aug-
mentation to them (random rotation or random defor-
mation) (Fig. 1c). To select only the target images, a
binary mask classifier based on the average pixel value
on the mask was used, determined the presence of a
flake on it. Images with an average value of less than
1 nm, that is, containing only a substrate, were dis-
carded. The size of the dataset element was selected for
optimal network speed and amounted to 128 pixels to
predict the thickness of the sample and 32 pixels to
predict the nonlinear optical response. The result size
of the dataset for predicting the thickness of the sam-
ple was about  elements. Since the intensity of an
8-bit RGB image lies in the range from 0 to 255, for
the convenience of learning, the images were scaled
using min-max normalization so that the target signal
range lies in the range from 0 to 1. The final dataset

410
Table 1. Quality of predictions Q (in percent) of the thick-
ness of the hBN sample for its various configurations on the
full dataset and dataset that does not contain elements with
significant kinks

Number of 
layers/kernel size Full dataset Dataset without 

kinks

10/(1 × 1) 65 91
10/(3 × 3) 68 92
16/(1 × 1) 85 94
16/(3 × 3) 83 95
16/(5 × 5) 88 95
was divided into train, test, and validation in a propor-
tion of 70:20:10.

To predict the film thicknesses, a convolutional
ANN of the U-Net type [22] was built, trained and
tested, solving the problem of pixel-by-pixel predic-
tion of the sample mask. The variable network param-
eters were the number of network layers, the size of the
used convolution kernel, and the amount of data sup-
plied to the input (batch size). The ANN was modeled
in the Python software environment using the
PyTorch, Numpy, and MatPlotLib packages. The
pixel-by-pixel mean standard deviation (MSE) of the
thickness values of the predicted map from the target
mask was used as a loss function. To assess the accu-
racy of the prediction, the average fraction of pixels in
the batch images was used, for which the thickness
deviation between the predicted and the set one was no
more than 2 nm:

(1)

where  is the total number of pixels in the image, 
and  are the target and predicted pixel thickness val-
ues, respectively. The deviation value of 2 nm was
taken as the maximum value of thickness f luctuations
obtained when determining the thickness of the mask
by atomic force microscopy. To assess the network’s
ability to generalize an independent data set, a cross-
validation approach was used, alternately excluding
one of the subsamples. A typical view of the learning
curve of the network, as well as the dependence of the
prediction accuracy on the epoch number (iteration of
training on a full dataset) for an ANN with ten layers
using convolution kernels of size 3 × 3, are shown in
Fig. 3a. The monotonically decreasing curve of the
loss function, gradually entering saturation, and the
corresponding curve of increasing the accuracy of
thickness prediction indicates a good ability to train
the model. The maximum achieved values of the pre-
diction accuracy of networks of various configurations
are shown in Table 1. The highest prediction accuracy
of 88% was achieved for an ANN consisting of 16 lay-
ers and using convolution kernels of size 5 × 5. A typ-
ical view of the target and predicted thickness map for
this case is shown in Fig. 3b. Analysis of the type of
thickness maps allows us to conclude that the greatest
contribution to the loss function is made by dataset
elements with significant kinks. The exception from
the dataset of elements containing thickness differ-
ences of more than 15 nm allowed to increase the
accuracy of the ANN predictions to 95%. A compari-
son of the accuracy obtained on the full dataset and a
dataset that does not contain kinks demonstrates an
increase in the accuracy of predictions for all configu-
rations of the ANN, which confirms the influence of
the quality of the dataset images. Special attention
should be paid to the fact that for an optimal dataset,
network configurations consisting of layers with con-
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Fig. 3. (Color online) (a) Loss function for the (blue line)
train and (orange line) test sets and (green line) the predic-
tion quality versus the epoch number. (b) Image of the tar-
get mask for (left) the dataset element and (right) the result
of the corresponding prediction of the ANN.
volution kernels of 1 × 1 are quite effective, which
demonstrates the possibility of simplifying the used
architecture.

3. PREDICTION OF NONLINEAR OPTICAL 
SIGNAL FROM BORON NITRIDE FILMS
The second part of the work was the prediction of

the nonlinear optical (NLO) response of hBN films
from optical images. The signal of the third optical
harmonic generated by the sample was chosen. In this
case, the distribution maps of the third optical har-
monic power over the sample surface were used as
JETP LETTERS  Vol. 118  No. 7  2023

Fig. 4. (Color online) (a) Dataset element for predicting th
(b, c) Third harmonic power versus the pixel number for the sl
kinks. The lines show experimental data, the circles with error b
masks, obtained by scanning f lakes with a focused
beam of a femtosecond titanium-sapphire laser [25].
The focal length was 2 microns, the sample offset step,
which determines the resolution of the final image,
was 0.3 microns. To assemble the dataset, the resolu-
tion of the maps was increased by taking a weighted
average from the elements, and the resolution of opti-
cal images was lowered by taking the average from
neighboring pixels (AveragePool). As a result, a data-
set consisting of “image–mask” pairs with a spatial
element size of 32 pixels was assembled. An example of
a dataset mask is shown in Fig. 4a. It can be seen that
there are kinks on the element, the nonlinear response
from which significantly exceeds the average value of
the sample. This effect is caused by the occurrence
of stress leading to deformation of the crystal lattice of
the material and a local increase in the efficiency
of nonlinear optical effects [26].

On this dataset, the training of ANN similar to
those used to predict the thickness of samples was car-
ried out. As a measure of prediction accuracy, the pro-
portion of pixels for which the target and predicted
capacities differ by no more than 0.5 pW was used. The
obtained prediction accuracy is shown in Table 2 (col-
umn “NLO”) and turns out to be lower than similar
values for the thickness prediction task. To analyze the
results, the dependences of the third harmonic power
distribution on the pixel number in the slice of the
dataset element were constructed. For a dataset ele-
ment with the thickness difference of 25 nm (Fig. 4b),
the main error in predicting the nonlinear response is
observed in the area of the height difference. The error
in predicting the signal from a f lat section of the sam-
ple is negligible. For an element having a stepped
structure with a monotonous change in thickness
(Fig. 4c), the accuracy of predicting the response turns
out to be higher, due to the absence of elements in the
dataset that introduce a significant error.

It is worth noting that the obtained accuracy can
probably be increased by further optimization of the
parameters of the used ANN, however, even the cur-
e magnitude of the third harmonic signal (non-normalized).
ice of two dataset elements (b) with and (c) without significant
ars show the network predictions averaged over ten attempts.
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Table 2. Quality of predictions Q (in percent) of the ANN
for the determining the thickness (column “thickness”) and
the nonlinear response (column “NLO”) of the sample

Number of 
layers/kernel size Thickness NLO

10/(1 × 1) 65 56
10/(3 × 3) 68 64
16/(1 × 1) 85 72
16/(3 × 3) 83 75
16/(5 × 5) 88 78
rently available values have sufficient predictive ability
for practical applications.

4. CONCLUSIONS

To conclude, the possibility of predicting morpho-
logical and nonlinear optical properties of thin films of
hexagonal boron nitride using convolutional neural
networks of the U-Net architecture is shown. The
maximum achieved accuracy of predicting the thick-
ness of the sample for the experimental dataset was
88%. It is shown that the obtained value can be
improved up to 95% by purification the dataset from
elements containing a significant difference in thick-
ness, which are also irrelevant for practical applica-
tions. In addition, the possibility of predicting the
nonlinear optical response of a sample, in particular
the third optical harmonic intensity, with an accuracy
of up to 78%, is demonstrated. The lower accuracy of
predicting the intensity of the third optical harmonic
compared to the thickness is due to the smaller size of
the dataset, as well as the existing ambiguity in the
dependence of the nonlinear response signal on the
thickness of the sample [25].

The obtained results show the prospects of using
convolutional neural networks for rapid optical and
nonlinear optical characterization of samples of
quasi-two-dimensional materials, which is necessary
both for fundamental point of view and for the
practical use of such structures in the fabrication of
more complex electronics and optoelectronics
devices. The code of the work and examples of
the dataset used are available at the link
https://github.com/AnyaPopkova/JETP_2D.git.
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